#' @title Visualizing the number of sent messages per person in 'WhatsApp' chat logs
#' @description Plots summarizing the amount of messages per person
#' @param data A 'WhatsApp' chat log that was parsed with \code{\link[WhatsR]{parse_chat}}.
#' @param names A vector of author names that the plots will be restricted to.
#' @param starttime Datetime that is used as the minimum boundary for exclusion. Is parsed with \code{\link[base]{as.POSIXct}}. Standard format is "yyyy-mm-dd hh:mm". Is interpreted as UTC to be compatible with 'WhatsApp' timestamps.
#' @param endtime Datetime that is used as the maximum boundary for exclusion. Is parsed with \code{\link[base]{as.POSIXct}}. Standard format is "yyyy-mm-dd hh:mm". Is interpreted as UTC to be compatible with 'WhatsApp' timestamps.
#' @param plot Type of plot to be returned, options are "bar", "cumsum", "heatmap" and "pie". Default is "bar".
#' @param return_data If TRUE, returns the subset data frame. Default is FALSE.
#' @param exclude_sm If TRUE, excludes the 'WhatsApp' system messages from the descriptive statistics. Default is FALSE.
#' @import ggplot2
#' @importFrom anytime anytime
#' @importFrom dplyr %>%
#' @importFrom dplyr group_by
#' @importFrom dplyr summarise
#' @importFrom mgsub mgsub
#' @importFrom methods is
#' @export
#' @return Plots summarizing the number of messages per person
#' @examples
#' data <- readRDS(system.file("ParsedWhatsAppChat.rds", package = "WhatsR"))
#' plot_messages(data)
#'
######## overall amount of messages per person
plot_messages <- function(data,
names = "all",
starttime = "1960-01-01 00:00",
endtime = "2200-01-01 00:00",
plot = "bar",
return_data = FALSE,
exclude_sm = FALSE) {
# First of all, we assign local variable with NULL to prevent package build error: https://www.r-bloggers.com/no-visible-binding-for-global-variable/
Var1 <- Freq <- DateTime <- total <- Sender <- day <- hour <- `Number of Messages` <- NULL
# catching bad params
# checking data
if (!is.data.frame(data)) {stop("'data' must be a dataframe parsed with parse_chat()")}
# start- and endtime are convertable to POSIXct
if (is.character(starttime) == FALSE | is.na(as.POSIXct(starttime,tz = "UTC"))) stop("starttime has to be a character string in the form of 'yyyy-mm-dd hh:mm' that can be converted by as.POSIXct().")
if (is.character(endtime) == FALSE | is.na(as.POSIXct(endtime,tz = "UTC"))) stop("endtime has to be a character string in the form of 'yyyy-mm-dd hh:mm' that can be converted by as.POSIXct().")
if (as.POSIXct(starttime,tz = "UTC") >= as.POSIXct(endtime,tz = "UTC")) stop("starttime has to be before endtime.")
# return_data must be bool
if (!is.logical(return_data)) stop("return_data has to be either TRUE or FALSE.")
# plot must be one of the the preset options
if (any(!plot %in% c("heatmap", "cumsum", "bar", "pie"))) stop("The plot type has to be heatmap, cumsum, bar or pie.")
# exclude_sm must be bool
if (!is.logical(exclude_sm)) stop("exclude_sm has to be either TRUE or FALSE.")
# setting starttime
if (as.POSIXct(starttime,tz = "UTC") <= min(data$DateTime)) {
starttime <- min(data$DateTime)
} else {
starttime <- as.POSIXct(starttime,tz = "UTC")
}
# setting endtime
if (as.POSIXct(endtime,tz = "UTC") >= max(data$DateTime)) {
endtime <- max(data$DateTime)
} else {
endtime <- as.POSIXct(endtime,tz = "UTC")
}
# setting names argument
if (length(names) == 1 && names == "all") {
if (exclude_sm == TRUE) {
# All names in the dataframe except System Messages
names <- unique(data$Sender)[unique(data$Sender) != "WhatsApp System Message"]
# dropping empty levels
if (is.factor(names)) {
names <- droplevels(names)
}
} else {
# including system messages
names <- unique(data$Sender)
}
}
# reducing to name and timescope
data <- data[is.element(data$Sender, names) & data$DateTime >= starttime & data$DateTime <= endtime, ]
if (plot == "bar") {
# creating barplot
output <- ggplot(as.data.frame(table(as.character(data$Sender))), aes(x = Var1, y = Freq, fill = Var1)) +
theme_minimal() +
geom_bar(stat = "identity") +
labs(
title = "Number of Messages sent by Persons",
subtitle = paste(starttime, " - ", endtime)
) +
xlab("Person") +
ylab("No. of Messages") +
labs(fill = "Person") +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
# printing
print(output)
}
if (plot == "cumsum") {
data <- data[with(data, order(data$Sender, data$DateTime)), ]
data <- cbind(data, MessageCount = rep(1, dim(data)[1]))
data$total <- do.call("c", tapply(data$MessageCount, data$Sender, FUN = cumsum))
output <- ggplot(data, aes(x = DateTime, y = total, color = Sender)) +
theme_minimal() +
geom_line() +
labs(
title = "Cumulative number of Messages sent",
subtitle = paste(starttime, " - ", endtime)
) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
xlab("Time") +
ylab("Total Messages Sent")
# printing
print(output)
}
if (plot == "pie") {
# creating piechart
output <- ggplot(as.data.frame(table(as.character(data$Sender))), aes(x = "", y = Freq, fill = Var1)) +
geom_bar(width = 1, stat = "identity") +
coord_polar("y", start = 0) +
xlab("") +
ylab("") +
labs(
fill = "Person", title = "Share of Messages by Persons",
subtitle = paste(starttime, " - ", endtime)
) +
theme(
axis.title.x = element_blank(),
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_rect(fill = "white", colour = "white")
)
# printing
print(output)
}
if (plot == "heatmap") {
# creating time data
data <- cbind(data, MessageCount = rep(1, dim(data)[1]))
NewFrame <- data[, c("DateTime", "Sender", "MessageCount")]
NewFrame$hour <- as.POSIXlt(NewFrame$DateTime,tz="UTC")$hour
NewFrame$year <- as.POSIXlt(NewFrame$DateTime,tz="UTC")$year + 1900
NewFrame$day <- weekdays(as.POSIXlt(NewFrame$DateTime,tz="UTC"), abbreviate = FALSE)
# shaping dataframe
helperframe2 <- NewFrame %>%
group_by(day, hour) %>%
summarise("Number of Messages" = n())
# factor ordering
weekdays <- rev(c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"))
# translate to english for better compatibility
helperframe2$day <- mgsub(helperframe2$day,
pattern = c("Sonntag", "Samstag", "Freitag", "Donnerstag", "Mittwoch", "Dienstag", "Montag"),
replacement = weekdays
)
helperframe2$day <- as.factor(helperframe2$day)
if (sum(weekdays %in% levels(helperframe2$day)) == 7) {
helperframe2$day <- factor(helperframe2$day, levels = weekdays)
} else {
helperframe2$day <- factor(helperframe2$day, c(levels(helperframe2$day), weekdays[!weekdays %in% levels(helperframe2$day)]))
helperframe2$day <- factor(helperframe2$day, levels = weekdays)
}
# plotting Heatmap
output <- ggplot(helperframe2, aes(hour, day)) +
theme_minimal() +
geom_tile(aes(fill = `Number of Messages`), colour = "black",width=1) +
labs(
title = "Messages by Weekday and Hour",
subtitle = paste(starttime, " - ", endtime),
x = "",
y = ""
) +
scale_fill_distiller(palette = "YlGnBu", direction = 1) +
scale_y_discrete(drop = FALSE) +
theme_minimal() +
theme(
axis.text.x = element_text(angle = 90, hjust = 1),
axis.ticks.x = element_blank(),
legend.position = "bottom",
legend.key.width = unit(2, "cm"),
panel.grid = element_blank()
) +
coord_equal() +
scale_x_continuous(
breaks = seq(-0.5, 23.5, 1),
limits = c(-0.5, 23.5),
labels = c(
"00:00",
"01:00",
"02:00",
"03:00",
"04:00",
"05:00",
"06:00",
"07:00",
"08:00",
"09:00",
"10:00",
"11:00",
"12:00",
"13:00",
"14:00",
"15:00",
"16:00",
"17:00",
"18:00",
"19:00",
"20:00",
"21:00",
"22:00",
"23:00",
"24:00"
)
)
print(output)
}
# returning data if desired
if (return_data == TRUE) {
if (plot == "heatmap") {
# returning
return(as.data.frame(helperframe2))
} else {
return(as.data.frame(table(data$Sender)))
}
} else {
return(output)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.