FitDoubleLogGu <-
function(
x,
t = index(x),
tout = t,
hessian = FALSE,
sf=quantile(x, probs=c(0.05, 0.95), na.rm=TRUE),
...
) {
.normalize <- function(x, sf) (x-sf[1])/(sf[2]-sf[1])
.backnormalize <- function(x, sf) (x+sf[1]/(sf[2]-sf[1]))*(sf[2]-sf[1])
if (any(is.na(x))) stop('NA in the time series are not allowed: fill them with e.g. na.approx()')
if (class(index(x))[1]=='POSIXct') {
doy.vector <- as.numeric(format(index(x), '%j'))
index(x) <- doy.vector
t <- index(x)
tout <- t
}
n <- length(na.omit(x))
n <- length(x)
x <- .normalize(x, sf=sf)
avg <- mean(x, na.rm=TRUE)
mx <- max(x, na.rm=TRUE)
mn <- min(x, na.rm=TRUE)
ampl <- mx - mn
.doubleLog <- function(par, t) {
y0=par[1]
a1 <- par[2]
a2 <- par[3]
t01 <- par[4]
t02 <- par[5]
b1 <- par[6]
b2 <- par[7]
c1 <- par[8]
c2 <- par[9]
xpred <- y0 + (a1/(1+exp(-(t-t01)/b1))^c1) - (a2/(1+exp(-(t-t02)/b2))^c2)
# xpred <- (a1*t + b1) + (a2*t^2 + b2*t + c)*(1/(1+q1*exp(-B1*(t-m1)))^v1 - 1/(1+q2*exp(-B2*(t-m2)))^v2)
return(xpred)
}
.error <- function(par, x, t) {
if (any(is.infinite(par))) return(99999)
xpred <- .doubleLog(par, t=t)
sse <- sum((xpred - x)^2, na.rm=TRUE)
return(sse)
}
doy <- quantile(t, c(0.25, 0.75), na.rm=TRUE)
# doy2 <- diff(doy)
y0 <- mn
a1 <- ampl #ok
a2 <- ampl #ok
tmp <- smooth.spline(x, df=0.5*length(x))
doy.max <- which.max(tmp$y)
t01 <- doy[1] + 0.5*(doy.max-doy[1])
t02 <- doy.max + 0.5*(doy[2]-doy.max)
b1 <- 10 #ok
b2 <- 10 #ok
c1 <- 1 # ok
c2 <- 1
prior <- rbind(
c(y0, a1, a2, t01, t02, b1, b2, c1, c2),
c(y0, a1, a2, t01, t02, b1, b2, 1.2, c2),
c(y0, 0.05, 0.05, t01, t02, 0.5, b2, c1, c2),
c(y0, a1, a2, doy[1], t02, b1, b2, c1, c2),
c(y0, a1, a2, t01, doy[2], 5, 5, c1, c2)
)
opt.l <- apply(prior, 1, optim, .error, x=x, t=t, method="BFGS", control=list(maxit=1000), hessian=hessian) # fit from different prior values
opt.df <- cbind(cost=unlist(llply(opt.l, function(opt) opt$value)), convergence=unlist(llply(opt.l, function(opt) opt$convergence)), ldply(opt.l, function(opt) opt$par))
## opt.df <- opt.df[-which(opt.df$V2<0),]
best <- which.min(opt.df$cost)
if (opt.df$convergence[best] == 1) { # if maximum iterations where reached - restart from best with more iterations
opt <- opt.l[[best]]
opt <- optim(opt.l[[best]]$par, .error, x=x, t=t, method="BFGS", control=list(maxit=1500), hessian=hessian)
prior <- rbind(prior, opt$par)
xpred <- .doubleLog(opt$par, t)
} else if (opt.df$convergence[best] == 0) {
opt <- opt.l[[best]]
prior <- rbind(prior, opt$par)
xpred <- .doubleLog(opt$par, t) ## perche questo restituisce nan?
}
if (opt$convergence != 0) {
opt$par[] <- NA
xpred <- rep(NA, length(tout))
} else {
xpred <- .doubleLog(opt$par, tout)
}
xpred <- .backnormalize(xpred, sf=sf)
xpred.out <- zoo(xpred, order.by=t)
names(opt$par) <- c('y0', 'a1', 'a2', 't01', 't02', 'b1', 'b2', 'c1', 'c2')
if (hessian) {
opt.new <- optim(opt$par, .error, x=x, t=t, method="BFGS", hessian=TRUE
## ,
## control=list('fnscale'=-1)
)
.qr.solve <- function(a, b, tol = 1e-07, LAPACK=TRUE) {
if (!is.qr(a))
a <- qr(a, tol = tol, LAPACK=LAPACK)
nc <- ncol(a$qr)
nr <- nrow(a$qr)
if (a$rank != min(nc, nr))
stop("singular matrix 'a' in solve")
if (missing(b)) {
if (nc != nr)
stop("only square matrices can be inverted")
b <- diag(1, nc)
}
res <- qr.coef(a, b)
res[is.na(res)] <- 0
res
}
vc <- .qr.solve(opt$hessian)
npar <- nrow(vc)
s2 <- opt.df$cost[best]^2 / (n - npar)
std.errors <- sqrt(diag(vc) * s2) # standard errors
}
fit.formula <- expression(y0 + (a1/(1+exp(-(t-t01)/b1))^c1) - (a2/(1+exp(-(t-t02)/b2))^c2))
output <- list(predicted=xpred.out, params=opt$par, formula=fit.formula, sf=sf)
if (hessian) output <- list(predicted = xpred.out, params = opt$par, formula = fit.formula, stdError=std.errors, sf=sf)
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.