# Duration data for the purpose of subsetting districts
y.route <- load.obj(3, './data/duration_data_arrays_1day_full.Rdata') # y.month, y.route
y.route <- get.subsamp(y.route, min.locations=30, min.samp=20)
D <- load.obj(1, './data/distance_matrix_named.rdata') # distance.matrix
N <- load.obj(1, './data/N_pop.rdata')
B <- load.obj(2, './output/gravity_model_basic_nogamma.Rdata')
R <- load.obj(2, './output/gravity_model_duration_multialpha_nogamma_meanbasic.Rdata')
load('./output/decay_1day_62dists_summary.Rdata') # mod.decay # Decay model parameters (Lambda)
load('./output/prop_remain_6pathogens_62dists_subsamp100.Rdata') # prop.remain # proportion individuals remaining for full generation for each pathogen generation
load('./data/prop_leave.rdata') # prop.leave # observed proportion individuals leaving origin at time t in trip duration data
districts.all <- dimnames(D)[[1]] # full set of district names
districts <- attributes(y.route)$dimnames$origin # subset of 62 districts
n.districts <- length(districts)
tmp <- districts.all %in% districts
D <- D[tmp, tmp]
N <- N[names(N) %in% districts]
prop.leave <- prop.leave[,dimnames(prop.leave)$origin %in% districts]
lambda <- get.param.vals(n.districts=n.districts, name='lambda', level='route', stats=mod.decay)
params <- list(
influenza=data.frame(pathogen='influenza', beta=1.5, gamma=0.75, gen=3, yrs=0.6)
)
pathogen <- 'influenza'
intro.district <- 42
I.0 <- rep(0, n.districts)
I.0[which(districts == intro.district)] <- 1 # introduction
t <- Sys.time()
sim <- sim.TSIR.full(
N=N, # Vector giving the population size of each district
D=D, # Distance matrix
lambda=lambda, # Decay model parameters (Lambda)
B=B, # Gravity model with duration
R=R, # Basic gravity model
prop.leave=prop.leave, # observed proportion individuals leaving origin at time t in trip duration data
prop.remain=prop.remain[[which(names(prop.remain) == pathogen)]], # bserved proportion of individuals remaining in destination j
beta=params[[pathogen]]$beta, # Transmission rate
gamma=params[[pathogen]]$gamma, # Recovery rate
gen=params[[pathogen]]$gen, # Pathogen generation time
I.0=I.0, # Vector giving number of infected individuals in each district at time 0
N.sim1=5, # Number of times to simulate matrices of model parameters (lambda, pi, tau, rho)
N.sim2=5, # Number of times to simulate epidemic outcomes under each realization of model parameters
max.t=ceiling((365*params[[pathogen]]$yrs)/params[[pathogen]]$gen), # Maximum number of generations
parallel=TRUE,
n.cores=n.cores
)
Sys.time() - t
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.