Description Usage Arguments Value Slots Author(s) See Also Examples
dmSQTLprecision extends the dmSQTLdata
by adding the
precision estimates of Dirichlet-multinomial distribution used to model the
feature (e.g., transcript, exon, exonic bin) counts for each gene-SNP pair in
the QTL analysis. Result of dmPrecision
.
1 2 3 4 5 6 7 8 | ## S4 method for signature 'dmSQTLprecision'
mean_expression(x)
## S4 method for signature 'dmSQTLprecision'
common_precision(x)
## S4 method for signature 'dmSQTLprecision'
genewise_precision(x)
|
x |
dmSQTLprecision object. |
mean_expression(x)
: Get a data frame with mean gene
expression.
common_precision(x)
: Get common precision.
genewise_precision(x)
: Get a data frame with gene-wise precision.
mean_expression
Numeric vector of mean gene expression.
common_precision
Numeric value of estimated common precision.
genewise_precision
List of estimated gene-wise precisions. Each element of this list is a vector of precisions estimated for all the genotype blocks assigned to a given gene.
Malgorzata Nowicka
dmSQTLdata
, dmSQTLfit
,
dmSQTLtest
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | # --------------------------------------------------------------------------
# Create dmSQTLdata object
# --------------------------------------------------------------------------
# Use subsets of data defined in the GeuvadisTranscriptExpr package
library(GeuvadisTranscriptExpr)
geuv_counts <- GeuvadisTranscriptExpr::counts
geuv_genotypes <- GeuvadisTranscriptExpr::genotypes
geuv_gene_ranges <- GeuvadisTranscriptExpr::gene_ranges
geuv_snp_ranges <- GeuvadisTranscriptExpr::snp_ranges
colnames(geuv_counts)[c(1,2)] <- c("feature_id", "gene_id")
colnames(geuv_genotypes)[4] <- "snp_id"
geuv_samples <- data.frame(sample_id = colnames(geuv_counts)[-c(1,2)])
d <- dmSQTLdata(counts = geuv_counts, gene_ranges = geuv_gene_ranges,
genotypes = geuv_genotypes, snp_ranges = geuv_snp_ranges,
samples = geuv_samples, window = 5e3)
# --------------------------------------------------------------------------
# sQTL analysis - simple group comparison
# --------------------------------------------------------------------------
## Filtering
d <- dmFilter(d, min_samps_gene_expr = 70, min_samps_feature_expr = 5,
minor_allele_freq = 5, min_gene_expr = 10, min_feature_expr = 10)
plotData(d)
## To make the analysis reproducible
set.seed(123)
## Calculate precision
d <- dmPrecision(d)
plotPrecision(d)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.