Description Usage Arguments Details Value Author(s) See Also Examples
This plot is available only for a group design, i.e., a design that is equivalent to multiple group fitting.
1 2 3 4 5 6 7 8 9 10 11 12 13 | plotProportions(x, ...)
## S4 method for signature 'dmDSfit'
plotProportions(x, gene_id, group_variable,
plot_type = "barplot", order_features = TRUE, order_samples = TRUE,
plot_fit = TRUE, plot_main = TRUE, group_colors = NULL,
feature_colors = NULL)
## S4 method for signature 'dmSQTLfit'
plotProportions(x, gene_id, snp_id,
plot_type = "boxplot1", order_features = TRUE, order_samples = TRUE,
plot_fit = FALSE, plot_main = TRUE, group_colors = NULL,
feature_colors = NULL)
|
x |
|
... |
Other parameters that can be defined by methods using this generic. |
gene_id |
Character indicating a gene ID to be plotted. |
group_variable |
Character indicating the grouping variable which is one
of the columns in the |
plot_type |
Character defining the type of the plot produced. Possible
values |
order_features |
Logical. Whether to plot the features ordered by their expression. |
order_samples |
Logical. Whether to plot the samples ordered by the
group variable. If |
plot_fit |
Logical. Whether to plot the proportions estimated by the full model. |
plot_main |
Logical. Whether to plot a title with the information about the Dirichlet-multinomial estimates. |
group_colors |
Character vector with colors for each group defined by
|
feature_colors |
Character vector with colors for each feature of gene
defined by |
snp_id |
Character indicating the ID of a SNP to be plotted. |
In the QTL analysis, plotting of fitted proportions is deactivated
even when plot_fit = TRUE
. It is due to the fact that neither fitted
values nor regression coefficients are returned by the dmFit
function as they occupy a lot of memory.
For a given gene, plot the observed and estimated with Dirichlet-multinomial model feature proportions in each group. Estimated group proportions are marked with diamond shapes.
Malgorzata Nowicka
plotData
, plotPrecision
,
plotPValues
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | # --------------------------------------------------------------------------
# Create dmDSdata object
# --------------------------------------------------------------------------
## Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata", package = "PasillaTranscriptExpr")
## Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)
## Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)
## Create a pasilla_samples data frame
pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)
levels(pasilla_samples$group)
## Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)
## Use a subset of genes, which is defined in the following file
gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))
d <- d[names(d) %in% gene_id_subset, ]
# --------------------------------------------------------------------------
# Differential transcript usage analysis - simple two group comparison
# --------------------------------------------------------------------------
## Filtering
## Check what is the minimal number of replicates per condition
table(samples(d)$group)
d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)
plotData(d)
## Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))
## To make the analysis reproducible
set.seed(123)
## Calculate precision
d <- dmPrecision(d, design = design_full)
plotPrecision(d)
head(mean_expression(d))
common_precision(d)
head(genewise_precision(d))
## Fit full model proportions
d <- dmFit(d, design = design_full)
## Get fitted proportions
head(proportions(d))
## Get the DM regression coefficients (gene-level)
head(coefficients(d))
## Get the BB regression coefficients (feature-level)
head(coefficients(d), level = "feature")
## Fit null model proportions and perform the LR test to detect DTU
d <- dmTest(d, coef = "groupKD")
## Plot the gene-level p-values
plotPValues(d)
## Get the gene-level results
head(results(d))
## Plot feature proportions for a top DTU gene
res <- results(d)
res <- res[order(res$pvalue, decreasing = FALSE), ]
top_gene_id <- res$gene_id[1]
plotProportions(d, gene_id = top_gene_id, group_variable = "group")
plotProportions(d, gene_id = top_gene_id, group_variable = "group",
plot_type = "lineplot")
plotProportions(d, gene_id = top_gene_id, group_variable = "group",
plot_type = "ribbonplot")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.