Description Usage Arguments Details Value Author(s) References See Also Examples
First, estimate the null Dirichlet-multinomial and beta-binomial model parameters and likelihoods using the null model design. Second, perform the gene-level (DM model) and feature-level (BB model) likelihood ratio tests. In the differential exon/transcript usage analysis, the null model is defined by the null design matrix. In the exon/transcript usage QTL analysis, null models are defined by a design with intercept only. Currently, beta-binomial model is implemented only in the differential usage analysis.
1 2 3 4 5 6 7 8 9 10 11 12 13 | dmTest(x, ...)
## S4 method for signature 'dmDSfit'
dmTest(x, coef = NULL, design = NULL, contrast = NULL,
one_way = TRUE, bb_model = TRUE, prop_mode = "constrOptim",
prop_tol = 1e-12, coef_mode = "optim", coef_tol = 1e-12, verbose = 0,
BPPARAM = BiocParallel::SerialParam())
## S4 method for signature 'dmSQTLfit'
dmTest(x, permutation_mode = "all_genes",
one_way = TRUE, prop_mode = "constrOptim", prop_tol = 1e-12,
coef_mode = "optim", coef_tol = 1e-12, verbose = 0,
BPPARAM = BiocParallel::SerialParam())
|
x |
|
... |
Other parameters that can be defined by methods using this generic. |
coef |
Integer or character vector indicating which coefficients of the
linear model are to be tested equal to zero. Values must indicate column
numbers or column names of the |
design |
Numeric matrix defining the null model. |
contrast |
Numeric vector or matrix specifying one or more contrasts of
the linear model coefficients to be tested equal to zero. For a matrix,
number of rows (for a vector, its length) must equal to the number of
columns of |
one_way |
Logical. Should the shortcut fitting be used when the design
corresponds to multiple group comparison. This is a similar approach as in
|
bb_model |
Logical. Whether to perform the feature-level analysis using the beta-binomial model. |
prop_mode |
Optimization method used to estimate proportions. Possible
value |
prop_tol |
The desired accuracy when estimating proportions. |
coef_mode |
Optimization method used to estimate regression
coefficients. Possible value |
coef_tol |
The desired accuracy when estimating regression coefficients. |
verbose |
Numeric. Definie the level of progress messages displayed. 0 - no messages, 1 - main messages, 2 - message for every gene fitting. |
BPPARAM |
Parallelization method used by
|
permutation_mode |
Character specifying which permutation scheme to
apply for p-value calculation. When equal to |
One must specify one of the arguments: coef
, design
or
contrast
.
When contrast
is used to define the null model, the null design
matrix is recalculated using the same approach as in
glmLRT
function from edgeR
.
Returns a dmDStest
or
dmSQTLtest
object.
Malgorzata Nowicka
McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | # --------------------------------------------------------------------------
# Create dmDSdata object
# --------------------------------------------------------------------------
## Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata", package = "PasillaTranscriptExpr")
## Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)
## Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)
## Create a pasilla_samples data frame
pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)
levels(pasilla_samples$group)
## Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)
## Use a subset of genes, which is defined in the following file
gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))
d <- d[names(d) %in% gene_id_subset, ]
# --------------------------------------------------------------------------
# Differential transcript usage analysis - simple two group comparison
# --------------------------------------------------------------------------
## Filtering
## Check what is the minimal number of replicates per condition
table(samples(d)$group)
d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)
plotData(d)
## Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))
## To make the analysis reproducible
set.seed(123)
## Calculate precision
d <- dmPrecision(d, design = design_full)
plotPrecision(d)
head(mean_expression(d))
common_precision(d)
head(genewise_precision(d))
## Fit full model proportions
d <- dmFit(d, design = design_full)
## Get fitted proportions
head(proportions(d))
## Get the DM regression coefficients (gene-level)
head(coefficients(d))
## Get the BB regression coefficients (feature-level)
head(coefficients(d), level = "feature")
## Fit null model proportions and perform the LR test to detect DTU
d <- dmTest(d, coef = "groupKD")
## Plot the gene-level p-values
plotPValues(d)
## Get the gene-level results
head(results(d))
## Plot feature proportions for a top DTU gene
res <- results(d)
res <- res[order(res$pvalue, decreasing = FALSE), ]
top_gene_id <- res$gene_id[1]
plotProportions(d, gene_id = top_gene_id, group_variable = "group")
plotProportions(d, gene_id = top_gene_id, group_variable = "group",
plot_type = "lineplot")
plotProportions(d, gene_id = top_gene_id, group_variable = "group",
plot_type = "ribbonplot")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.