get_fixed_target <- function(target_value, baseline_value, baseline_year = 2018, target_year = 2025) {
baseline_value + (2025 - baseline_year) * (target_value - baseline_value) / (target_year - baseline_year)
}
testthat::test_that(paste0("accelerate_adult_obese returns accurate values:"), {
ind <- "adult_obese"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
baseline_year = 2018,
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 60)
df_add_indicator_2018 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2018) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2018, 68)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
baseline_year = 2018,
bau_scenario = "default",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 60)
df_add_indicator_2018 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2022) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2018, 68.25)
})
testthat::test_that(paste0("accelerate_alcohol returns accurate values:"), {
ind <- "alcohol"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
baseline_year = 2018,
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 54)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
baseline_year = 2018,
bau_scenario = "default",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 54)
})
testthat::test_that(paste0("accelerate_child_obese returns accurate values:"), {
ind <- "child_obese"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
baseline_year = 2018,
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 60)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
baseline_year = 2018,
bau_scenario = "default",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 60)
})
testthat::test_that(paste0("accelerate_child_viol returns accurate values:"), {
ind <- "child_viol"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
baseline_year = 2018,
bau_scenario = "default",
start_scenario_last_default = FALSE)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 28.3333333)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
baseline_year = 2018,
bau_scenario = "default",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025,
get_fixed_target(0, 68, 2021, 2030))
})
testthat::test_that(paste0("accelerate_devontrack returns accurate values:"), {
ind <- "devontrack"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
baseline_year = 2018,
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 75)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
baseline_year = 2018,
bau_scenario = "default",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025,
get_fixed_target(80, 68, 2021, 2030))
})
testthat::test_that(paste0("accelerate_fuel returns accurate values:"), {
ind <- "fuel"
df <- tibble::tibble(
value = c(rep(60:80, 2), seq(40, 80, length.out = 21)),
year = rep(2010:2030, 3),
ind = ind,
iso3 = c(rep("AFG", 21), rep("FIN", 21), rep("COD", 21)),
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, c(75, 70, 75))
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "historical",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, c(75, 70, 75))
})
testthat::test_that(paste0("accelerate_hpop_sanitation, accelerate_hpop_sanitation_urban, accelerate_hpop_rural returns accurate values:"), {
ind <- "hpop_sanitation"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 75)
ind <- "hpop_sanitation_rural"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 75)
ind <- "hpop_sanitation_urban"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 75)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = "hpop_sanitation",
scenario_function = "accelerate",
bau_scenario = "historical",
start_scenario_last_default = TRUE)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 75)
})
testthat::test_that(paste0("accelerate_hpop_tobacco returns accurate values:"), {
ind <- "hpop_tobacco"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
type = dplyr::case_when(
year <= 2018 ~ "estimated",
TRUE ~ "projected"
),
source = NA_character_
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 42)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "historical",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 42)
})
testthat::test_that(paste0("accelerate_ipv returns accurate values:"), {
ind <- "ipv"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
baseline_year = 2018,
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 28.3333333)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "historical",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, get_fixed_target(0, 71, 2021, 2030))
})
testthat::test_that(paste0("accelerate_overweight returns accurate values:"), {
ind <- "overweight"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 11.0119977)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 25.087793)
})
testthat::test_that(paste0("accelerate_pm25 returns accurate values:"), {
ind <- "pm25"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 68 + (68 * -0.02) * (2025 - 2018))
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 71 + (68 * -0.02) * (2025 - 2021))
})
testthat::test_that(paste0("accelerate_road returns accurate values:"), {
ind <- "road"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 69 + (35 - 70) * (2025 - 2020) / (2030 - 2020))
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 71 + ((35 - 71) * (2025 - 2020) / (2030 - 2020)))
})
testthat::test_that(paste0("accelerate_stunting returns accurate values:"), {
ind <- "stunting"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 51.932794)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 60.864323)
})
testthat::test_that(paste0("accelerate_suicide returns accurate values:"), {
ind <- "suicide"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 66 + ((65 *(100 - 33.333)/100) - 65) * (2025 - 2015) / (2030 - 2015))
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 67 + ((65 *(100 - 33.333)/100) - 65) * (2025 - 2015) / (2030 - 2015))
})
testthat::test_that(paste0("accelerate_transfats returns accurate values:"), {
ind <- "transfats"
df <- tibble::tibble(
value = rep(0, 21),
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 100)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 100)
})
testthat::test_that(paste0("accelerate_wasting returns accurate values:"), {
ind <- "wasting"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_
) %>%
dplyr::mutate(type = dplyr::case_when(
year > 2020 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 11.0119977)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = TRUE)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 71 * ((1 - 0.2964125)^(2025 - 2021)), tolerance = 1e-05)
})
testthat::test_that(paste0("accelerate_water, water_urban and water_rural returns accurate values:"), {
ind <- "water"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 75)
ind <- "water_urban"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = "water",
scenario_function = "accelerate",
quantile_year = 2010,
bau_scenario = "default",
start_scenario_last_default = FALSE,
make_default = FALSE,
expend_bau = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 75)
ind <- "water_rural"
df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
ind = ind,
iso3 = "testalia",
scenario = "default",
source = NA_character_,
type = dplyr::if_else(year <= 2021, "reported", "projected")
)
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 75)
df <- df %>%
dplyr::mutate(scenario = dplyr::case_when(
year > 2021 ~ "historical",
TRUE ~ scenario
),
type = dplyr::case_when(
year > 2021 ~ "projected",
TRUE ~ "reported"
))
df_add_indicator <- add_scenario_indicator(df,
indicator = ind,
scenario_function = "accelerate",
bau_scenario = "default",
start_scenario_last_default = TRUE
)
df_add_indicator_2025 <- df_add_indicator %>%
dplyr::filter(scenario == "acceleration", year == 2025) %>%
dplyr::pull(value)
testthat::expect_equal(df_add_indicator_2025, 75)
})
testthat::test_that("acceleration can be run on all hpop indicators:", {
hpop_test_df <- tibble::tibble(
value = 60:80,
year = 2010:2030,
iso3 = "testalia",
scenario = "default",
type = dplyr::case_when(
year <= 2018 ~ "estimated",
TRUE ~ "projected"
),
source = NA_character_
) %>%
tidyr::expand_grid(ind = billion_ind_codes("hpop", include_subindicators = FALSE)) %>%
dplyr::mutate(value = dplyr::if_else(.data[["ind"]] == "transfats", 100L, value))
calculated_test_data <- add_scenario(hpop_test_df,
"accelerate",
bau_scenario = "default",
start_scenario_last_default = FALSE)
testthat::expect_equal(nrow(calculated_test_data), 491)
test_data <- load_misc_data("test_data/test_data/test_data_2022-03-06T09-30-41.parquet") %>%
dplyr::mutate(source = NA_character_)
testthat::expect_error(
test_data %>%
dplyr::filter(ind %in% billion_ind_codes("hpop"),
scenario != "default") %>%
make_default_scenario(billion = "hpop", default_scenario = "pre_covid_trajectory") %>%
dplyr::filter(scenario == "default") %>%
add_scenario("accelerate", bau_scenario = "default",
start_scenario_last_default = FALSE,
make_default = FALSE,
expend_bau = FALSE),
NA
)
testthat::expect_error(
test_data %>%
dplyr::filter(ind %in% billion_ind_codes("hpop")) %>%
add_scenario("accelerate",
bau_scenario = "pre_covid_trajectory",
start_scenario_last_default = TRUE,
make_default = TRUE,
default_scenario = "default",
billion = "hpop",
expend_bau = FALSE),
NA
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.