R/TODO/plotCoverOverlap.R

library(IRanges)

###############################################################################
#  Average coverage for the given experiments in the given positions 
###############################################################################
coverAroundDF <- function (exps, df, window, avg=TRUE, col.pos="txStart",
                           col.chr="chrom", col.strand="strand",
                           col.row.names="name", cores=1)
{
    if (!(col.pos %in% names(df))) {
        simpleError("Position column not found in reference data frame")
    }
    if (!(col.chr %in% names(df))) {
        simpleError("Chromosome column not found in reference data frame")
    }
    if (!(col.strand %in% names(df))) {
        simpleError("Strand column not found in reference data frame")
    }

    row.names <- 1:nrow(df)
    if (col.row.names %in% names(df)) {
        row.names <- as.character(df[, col.row.names])
    }

    return(coverAround(exps,
                       chrom  = as.character(df[, col.chr]),
                       start  = as.numeric(df[, col.pos]),
                       end    = as.numeric(df[, col.pos]),
                       strand = as.character(df[, col.strand]),
                       names  = as.character(df[, col.row.names]),
                       window = window,
                       avg    = avg,
                       cores  = cores))
}

# Wrapper for SacCer1
coverAroundSC1 <- function (exps, window, avg=TRUE,
                            data="/mmb/homes/oflores/workbench/data/SacCer1_genes.RData",
                            feature="txStart",
                            cores=1,
                            names=NULL)
{
    genes <- load(data)
    genes <- get(genes)

    if (!is.null(names)) {
        genes <- genes[genes$name %in% toupper(names), ]
    }

    return(coverAroundDF(exps,
                         df            = genes[genes$chrom != "chrM", ],
                         window        = window,
                         avg           = avg,
                         col.pos       = feature,
                         col.chr       = "chrom",
                         col.strand    = "strand",
                         col.row.names = "name",
                         cores         = cores))
}

# CoverAroundIRanges
coverAroundIR <- function (exps, ir, row.names=1:length(ir), window=0,
                           avg=TRUE, cores=1)
{
    return(coverAround(exps,
                       chrom  = ir$names,
                       start  = ir$start,
                       end    = ir$end,
                       strand = "+",
                       names  = row.names,
                       window = window,
                       avg    =avg,
                       cores  = cores))
}

# Wrapper for intelligent parallel aplication
coverAround <- function (exps, chrom, start, end, strand="+",
                         names=1:length(start), window=0, avg=TRUE, cores=1)
{
    if (length(exps) > 1 & cores > 1) {
        print("Parallel execution mode")
        res <- mclapply(exps,
                        .coverAround_1cor,
                        chrom,
                        start,
                        end,
                        strand,
                        names,
                        window,
                        avg,
                        cores=1,
                        mc.cores=cores)
        names(res) <- exps
        return(res)
    } else {
        print("Serial execution mode")
        return(.coverAround_1cor(exps,
                                 chrom,
                                 start,
                                 end,
                                 strand,
                                 names,
                                 window,
                                 avg,
                                 cores=cores))
    }
}

##### This function does the work
.coverAround_1cor <- function (exps, chrom, start, end, strand="+",
                               names=1:length(start), window=0, avg=TRUE,
                               cores=1)
{
    if (length(strand) == 1) {
        strand <- rep(strand, length(start))
    }
    slen <- length(start)
    check <- any(lapply(list(end, chrom, strand, name),
                        function (x) slen != length(x)))
    if (check) {
        simpleError("Error: chrom, start, end, and strand must have the same ",
                    "length")
    }

    serial <- length(exps) > 1
    swap <- which(end < start)
    if (length(swap) > 0) {
        start_tmp <- start[swap]
        start[swap] <- end[swap]
        end[swap] <- start_tmp
    }

    win_ini <- start - window + 1  # +1 for the "0"
    win_end <- end + window - 1

    if (serial) {
        writeLines(paste("  Calculating coverage for",
                         length(exps),
                         "samples: ",
                         sep=" "),
                   sep=" ")
    } else {
        print(paste("  Calculating coverage for", exps[[1]]))
    }

    coverage <- list()
    for(exp in exps) {
        if (serial) {
            writeLines(as.character(length(coverage) + 1), sep=" ")
        }

        VEC <- cbind(as.character(chrom), win_ini, win_end, strand)
        names(VEC) <- NULL
        VEC_L <- list()
        for (i in 1:nrow(VEC)) {
            VEC_L[[i]] <- c(chr = VEC[[i, 1]],
                            wstart = VEC[[i, 2]],
                            wend = VEC[[i, 3]],
                            strand = VEC[[i, 4]])
        }

        sample <- get(exp)  # Now it supports Rle lists
        if (length(grep("rle", class(sample), ignore.case=TRUE)) > 0) {
            sample <- mclapply(as.list(sample), as.numeric, mc.cores=cores)
        }

        max_len <- window*2 + max(end - start)

        indRange <- function (chr, start, end, strand) {
            start <- as.numeric(start)
            end <- as.numeric(end)
            vec <- try(sample[[chr]][start:(end + 1)], silent=TRUE)
            if (class(vec) == "try-error") {
                tmp <- rep(NA, max_len)
            }
            vec <- as.numeric(vec)
            if (strand == "-") {
                vec <- rev(vec)
            }
            return (c(vec, rep(0, max_len - length(vec))))
        }

        tmp <- mclapply(VEC_L,
                        function(x)
                            indRange(x["chr"],
                                     x["wstart"],
                                     x["wend"],
                                     x["strand"]),
                        mc.cores=cores)
        dimnames <- list(names, -window:(max_len - window - 1))
        coverage[[exp]] <- matrix(unlist(tmp),
                                  nrow     = length(start),
                                  ncol     = max_len,
                                  byrow    = TRUE,
                                  dimnames = dimnames)

    }

    if (serial) {
        writeLines("   done.")
    } else {
        print(paste("   ", exps[[1]], "done"))
    }

    if (length(coverage) ==1 ) {
        if (!avg) {
            return(coverage[[1]])
        } else {
            return(colMeans(coverage[[1]], na.rm=TRUE))
        }
    } else {
        if (!avg) {
            return(coverage)
        } else {
            return(lapply(coverage, colMeans, na.rm=TRUE))
        }
    }
}

###############################################################################
#  Plots the coverage overlap version (coverArround results)
###############################################################################
plotCoverOverlap <- function (covers, smooth.pc=NULL, norm=FALSE, cols=NULL,
                              ltys=NULL, lwds=NULL, leg.x="bottomright",
                              ylim=NULL, xlim=NULL, ...)
{
    if (norm) {
        for (cov in names(covers)) {
            tmp <- covers[[cov]]
            tmp <- tmp - min(tmp)
            tmp <- tmp / max(tmp)
            covers[[cov]] <- tmp
        }
    }

    if (is.null("ylim")) {
        min <- min(unlist(lapply(covers, min)))
        max <- max(unlist(lapply(covers, max)))
        ylim <- c(min - abs(min*0.01), max + abs(max*0.01))
    }

    if (is.null("xlim")) {
        labels <- as.numeric(names(covers[[1]]))
        xlim <- c(min(labels), max(labels))
    }

    if (is.null(cols)) {
        n <- length(covers)
        if (n > 2 && n <= 10) {
            cols <- RColorBrewer::brewer.pal(n, "Paired")
        } else {
            cols <- rainbow(n)
        }
    }

    if (is.null(ltys)) {
        ltys <- rep(1, length(covers))
    }
    if (is.null(lwds)) {
        lwds <- rep(2, length(covers))
    }

    if (!is.null(smooth.pc)) {
        covers <- mclapply(covers, filterFFT0, pcKeepComp=smooth.pc)
    }

    plot(as.numeric(names(covers[[1]])),
         covers[[1]],
         ylim = ylim,
         xlim = xlim,
         type = "l",
         lwd  = lwds[[1]],
         col  = cols[[1]],
         lty  = ltys[[1]],
         ...)

    for (i in 2:length(covers)) {
        lines(as.numeric(names(covers[[i]])),
              covers[[i]],
              type = "l",
              lwd  = lwds[[i]],
              col  = cols[[i]],
              lty  = ltys[[i]])
    }

    if (leg.x != "n") {
        legend(leg.x,
               names(covers),
               col = cols,
               lty = ltys,
               lwd = lwds,
               cex = 0.8,
               bty = "n")
    }
}

###############################################################################
#  Plots the coverage individual (non-avg)
#  version (coverArround results, avg=FALSE)
###############################################################################
plotCoverIndiv <- function (cover, col=NULL, breaks=NULL,  ylab="Genes",
                            xlab="Position from TSS", file="", ...)
{
    if(file != "") {
        png(paste(file, "png", sep="."), width=6000, height=6000)
        par(cex=10)
    }

    if (is.null(breaks)) {
        breaks <- c((0:8) / 8)
    }
    if (is.null(col)) {
        col <- RColorBrewer::brewer.pal(8, "Blues")
    }

    cov <- apply(cover, 1, function(x) (x - min(x)) / max(x - min(x)))
    cov <- t(cov)
    cov <- apply(cov, 1, function(x) rev(x))

    image(x      = rev(as.numeric(rownames(cov))),
          y      = 1:ncol(cov),
          z      = cov,
          zlim   = c(0,1),
          breaks = breaks,
          col    = col,
          ylab   = ylab,
          xlab   = xlab,
          ...)

    if (file != "") {
        dev.off()
    }
}
gthar/nucleR2 documentation built on May 17, 2019, 8:56 a.m.