Description Usage Arguments Value Author(s) References See Also Examples
View source: R/breeding_values.R
Computes breeding values for each genotyped individual based on multiple QTL models
1 2 3 4 | breeding_values(data, fitted)
## S3 method for class 'qtlpoly.bvalues'
plot(x, pheno.col = NULL)
|
data |
an object of class |
fitted |
an object of class |
x |
an object of class |
pheno.col |
a numeric vector with the phenotype column numbers to be plotted; if |
An object of class qtlpoly.bvalues
which is a list of results
for each trait containing the following components:
pheno.col |
a phenotype column number. |
y.hat |
a column matrix of breeding value for each individual. |
A ggplot2 histogram with the distribution of breeding values.
Guilherme da Silva Pereira, gdasilv@ncsu.edu
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. http://doi.org/10.1534/genetics.120.303080.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ## Not run:
# load raw data
data(maps)
data(pheno)
# estimate conditional probabilities using mappoly package
library(mappoly)
genoprob <- lapply(maps, calc_genoprob)
# prepare data
data <- read_data(ploidy = 6, geno.prob = genoprob, pheno = pheno, step = 1)
# perform remim
remim.mod <- remim(data = data, w.size = 15, sig.fwd = 0.01, sig.bwd = 0.0001,
d.sint = 1.5, n.clusters = 4, plot = "remim")
# fit model
fitted.mod <- fit_model(data = data, model = remim.mod, probs = "joint",
polygenes = "none")
# predict genotypic values
y.hat <- breeding_values(data = data, fitted = fitted.mod)
plot(y.hat)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.