Description Usage Arguments Value Author(s) References See Also Examples
Fits alternative multiple QTL models by performing variance component estimation using REML.
1 2 3 4 5 6 7 8 9 10 11 |
data |
an object of class |
model |
an object of class |
probs |
a character string indicating if either |
polygenes |
a character string indicating if either |
keep |
if |
x |
an object of class |
pheno.col |
a numeric vector with the phenotype column numbers to be summarized; if |
An object of class qtlpoly.fitted
which contains a list of results
for each trait with the following components:
pheno.col |
a phenotype column number. |
fitted |
a sommer object of class |
qtls |
a data frame with information from the mapped QTL. |
Guilherme da Silva Pereira, gdasilv@ncsu.edu
Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11 (6): 1–15. http://doi.org/10.1371/journal.pone.0156744.
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. http://doi.org/10.1534/genetics.120.303080.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## Not run:
# load raw data
data(maps)
data(pheno)
# estimate conditional probabilities using mappoly package
library(mappoly)
genoprob <- lapply(maps, calc_genoprob)
# prepare data
data <- read_data(ploidy = 6, geno.prob = geno.prob, pheno = pheno, step = 1)
# perform remim
remim.mod <- remim(data = data, w.size = 15, sig.fwd = 0.01, sig.bwd = 0.0001,
d.sint = 1.5, n.clusters = 4, plot = "remim")
# fit model
fitted.mod <- fit_remim(data=data, model=remim.mod, probs="joint", polygenes="none")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.