Description Usage Arguments Value Author(s) References See Also Examples
Plots profiled logarithm of score-based P-values (LOP) from individual or combined traits.
1 2 3 4 5 6 7 8 9 10 |
data |
an object of class |
model |
an object of class |
pheno.col |
a numeric vector with the phenotype column numbers to be plotted; if |
sup.int |
if |
main |
a character string with the main title; if |
legend |
legend position (either "bottom", "top", "left" or "right"); if |
ylim |
a numeric value pair supplying the limits of y-axis, e.g. c(0,10); if |
grid |
if |
A ggplot2 with the LOP profiles for each trait.
Guilherme da Silva Pereira, gdasilv@ncsu.edu
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. http://doi.org/10.1534/genetics.120.303080.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ## Not run:
# load raw data
data(maps)
data(pheno)
# estimate conditional probabilities using mappoly package
library(mappoly)
genoprob <- lapply(maps, calc_genoprob)
# prepare data
data <- read_data(ploidy = 6, geno.prob = genoprob, pheno = pheno, step = 1)
# perform remim
remim.mod <- remim(data = data, w.size = 15, sig.fwd = 0.01, sig.bwd = 0.0001,
d.sint = 1.5, n.clusters = 4, plot = "remim")
# plot profiles
for (p in remim.mod$pheno.col) {
plot_profile(data = data, model = remim.mod, pheno.col = p, ylim = c(0, 10))
} # separate plots
plot_profile(data = data, model = remim.mod, grid = FALSE) # combined plots
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.