Description Usage Arguments Value Author(s) References See Also Examples
Tests each QTL at a time and updates its position (if it changes) or drops the QTL (if non-significant).
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 
| data | an object of class  | 
| offset.data | a data frame with the same dimensions of  | 
| model | an object of class  | 
| sig.bwd | the desired score-based p-value threshold for backward elimination, e.g. 0.0001 (default). | 
| score.null | an object of class  | 
| polygenes | if  | 
| n.clusters | number of parallel processes to spawn. | 
| plot | a suffix for the file's name containing plots of every QTL optimization round, e.g. "optimize" (default); if  | 
| verbose | if  | 
| x | an object of class  | 
| pheno.col | a numeric vector with the phenotype columns to be printed; if  | 
An object of class qtlpoly.optimize which contains a list of results for each trait with the following components:
| pheno.col | a phenotype column number. | 
| stat | a vector containing values from score statistics. | 
| pval | a vector containing p-values from score statistics. | 
| qtls | a data frame with information from the mapped QTL. | 
Guilherme da Silva Pereira, gdasilv@ncsu.edu
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. http://doi.org/10.1534/genetics.120.303080.
Qu L, Guennel T, Marshall SL (2013) Linear score tests for variance components in linear mixed models and applications to genetic association studies. Biometrics 69 (4): 883–92. doi.org/10.1111/biom.12095.
Zou F, Fine JP, Hu J, Lin DY (2004) An efficient resampling method for assessing genome-wide statistical significance in mapping quantitative trait loci. Genetics 168 (4): 2307-16. doi.org/10.1534/genetics.104.031427
read_data, null_model, search_qtl
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |   ## Not run: 
  # load raw data
  data(maps)
  data(pheno)
  # estimate conditional probabilities using 'mappoly' package
  library(mappoly)
  genoprob <- lapply(maps, calc_genoprob)
  # prepare data
  data <- read_data(ploidy = 6, geno.prob = genoprob, pheno = pheno, step = 1)
  # build null models
  null.mod <- null_model(data = data, n.clusters = 4, plot = "null")
  # perform forward search
  search.mod <- search_qtl(data = data, model = null.mod, w.size = 15, sig.fwd = 0.01,
    n.clusters = 4, plot = "search")
  # optimize model
  optimize.mod <- optimize_qtl(data = data, model = search.mod, sig.bwd = 0.0001,
    n.clusters = 4, plot = "optimize")
  
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.