#' Model optimization
#'
#' Tests each QTL at a time and updates its position (if it changes) or drops the QTL (if non-significant).
#'
#' @param data an object of class \code{qtlpoly.data}.
#'
#' @param offset.data a data frame with the same dimensions of \code{data$pheno} containing offset variables; if \code{NULL} (default), no offset variables are considered.
#'
#' @param model an object of class \code{qtlpoly.model} containing the QTL to be optimized.
#'
#' @param sig.bwd the desired score-based \emph{p}-value threshold for backward elimination, e.g. 0.0001 (default).
#'
#' @param score.null an object of class \code{qtlpoly.null} with results of score statistics from resampling.
#'
#' @param polygenes if \code{TRUE} all QTL but the one being tested are treated as a single polygenic effect, if \code{FALSE} (default) all QTL effect variances have to estimated.
#'
#' @param n.clusters number of parallel processes to spawn.
#'
#' @param plot a suffix for the file's name containing plots of every QTL optimization round, e.g. "optimize" (default); if \code{NULL}, no file is produced.
#'
#' @param verbose if \code{TRUE} (default), current progress is shown; if \code{FALSE}, no output is produced.
#'
#' @param x an object of class \code{qtlpoly.optimize} to be printed.
#'
#' @param pheno.col a numeric vector with the phenotype columns to be printed; if \code{NULL}, all phenotypes from \code{'data'} will be included.
#'
#' @return An object of class \code{qtlpoly.optimize} which contains a list of \code{results} for each trait with the following components:
#'
#' \item{pheno.col}{a phenotype column number.}
#' \item{stat}{a vector containing values from score statistics.}
#' \item{pval}{a vector containing \emph{p}-values from score statistics.}
#' \item{qtls}{a data frame with information from the mapped QTL.}
#'
#' @seealso \code{\link[qtlpoly]{read_data}}, \code{\link[qtlpoly]{null_model}}, \code{\link[qtlpoly]{search_qtl}}
#'
#' @examples
#' \dontrun{
#' # load raw data
#' data(maps)
#' data(pheno)
#'
#' # estimate conditional probabilities using 'mappoly' package
#' library(mappoly)
#' genoprob <- lapply(maps, calc_genoprob)
#'
#' # prepare data
#' data <- read_data(ploidy = 6, geno.prob = genoprob, pheno = pheno, step = 1)
#'
#' # build null models
#' null.mod <- null_model(data = data, n.clusters = 4, plot = "null")
#'
#' # perform forward search
#' search.mod <- search_qtl(data = data, model = null.mod, w.size = 15, sig.fwd = 0.01,
#' n.clusters = 4, plot = "search")
#'
#' # optimize model
#' optimize.mod <- optimize_qtl(data = data, model = search.mod, sig.bwd = 0.0001,
#' n.clusters = 4, plot = "optimize")
#' }
#'
#' @author Guilherme da Silva Pereira, \email{gdasilv@@ncsu.edu}
#'
#' @references
#' Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, \emph{Genetics} 215 (3): 579-595. \url{http://doi.org/10.1534/genetics.120.303080}.
#'
#' Qu L, Guennel T, Marshall SL (2013) Linear score tests for variance components in linear mixed models and applications to genetic association studies. \emph{Biometrics} 69 (4): 883–92. \url{doi.org/10.1111/biom.12095}.
#'
#' Zou F, Fine JP, Hu J, Lin DY (2004) An efficient resampling method for assessing genome-wide statistical significance in mapping quantitative trait loci. \emph{Genetics} 168 (4): 2307-16. \url{doi.org/10.1534/genetics.104.031427}
#'
#' @export optimize_qtl
#' @import varComp parallel
optimize_qtl <- function(data, offset.data = NULL, model, sig.bwd = 0.05, score.null = NULL, polygenes = FALSE, n.clusters = NULL, plot = "optimize", verbose = TRUE) {
if(is.null(n.clusters)) n.clusters <- 1
cat("INFO: Using", n.clusters, "CPUs for calculation\n\n")
cl <- makeCluster(n.clusters)
clusterEvalQ(cl, require(varComp))
sig.bwd0 <- sig.bwd
min.pvl <- NULL
if(!is.null(score.null)) {
min.pvl <- numeric(length(score.null$results))
for(p in 1:length(score.null$results)) {
min.pvl[p] <- score.null$results[[p]]$pval[which.max(score.null$results[[p]]$stat)]
}
} else if(!is.null(model$min.pvl)) {
min.pvl <- model$min.pvl
}
if(!is.null(plot)) plot <- paste(plot, "pdf", sep = ".")
results <- vector("list", length(model$results))
names(results) <- names(model$results)
for(p in 1:length(results)) {
if(!is.null(min.pvl)) {
sig.bwd <- quantile(sort(min.pvl), sig.bwd0)#; cat(sig.bwd, "\n")
} else {
sig.bwd <- sig.bwd0
}
start <- proc.time()
pheno.col <- model$results[[p]]$pheno.col
stat <- model$results[[p]]$stat
pval <- model$results[[p]]$pval
qtl.mrk <- model$results[[p]]$qtl[,"Nmrk"]
qtl.lgr <- model$results[[p]]$qtl[,"LG"]
qtl.pos <- model$results[[p]]$qtl[,"Pos"]
if(verbose) {
if(length(qtl.mrk) == 0) cat("Model optimization for trait ", pheno.col, " ", sQuote(colnames(data$pheno)[pheno.col]), "; there are no QTL in the model \n", sep="")
if(length(qtl.mrk) == 1) cat("Model optimization for trait ", pheno.col, " ", sQuote(colnames(data$pheno)[pheno.col]), "; there is ", length(qtl.mrk), " QTL in the model already \n", sep="")
if(length(qtl.mrk) >= 2) cat("Model optimization for trait ", pheno.col, " ", sQuote(colnames(data$pheno)[pheno.col]), "; there are ", length(qtl.mrk), " QTL in the model already \n", sep="")
}
if(!is.null(plot)) pdf(paste(colnames(data$pheno)[pheno.col], plot, sep = "_"))
ind <- rownames(data$pheno)[which(!is.na(data$pheno[,pheno.col]))]
Y <- data$pheno[ind,pheno.col]
if(is.null(offset.data)) {
offset <- NULL
} else {
offset <- offset.data[ind,pheno.col]
}
qtl.out <- c(1)
while(!is.null(qtl.out)) {
qtl.out <- c()
if(length(qtl.mrk) == 1) {
if(verbose) cat(" Refining QTL positions ...", qtl.mrk, "\n")
markers.out <- c((data$cum.nmrk[qtl.lgr[1]]+1):(data$cum.nmrk[qtl.lgr[1]+1]))
temp <- parSapply(cl, as.character(markers.out), function(x) { #like first search
m <- as.numeric(x)
full.mod <- varComp(Y ~ 1, varcov = list(data$G[ind,ind,m]), offset = offset)
test <- varComp.test(full.mod, null=integer(0L))
c(st=as.numeric(test[[1]][[1]][[1]]$statistic), pv=as.numeric(test[[1]][[1]][[1]]$p.value))
})
stat[as.numeric(colnames(temp))] <- temp["st",]
pval[as.numeric(colnames(temp))] <- temp["pv",]
if(pval[markers.out[which.max(stat[markers.out])]] <= sig.bwd) { # updates position
qtl.mrk[1] <- markers.out[which.max(stat[markers.out])]
} else { # stores non-significant
qtl.out <- c(1)
}
if(!is.null(plot)) {
plot(-log10(pval), xlab="Marker number", ylab="-log10(p)", main="Refining round #1", ylim=c(0,10))
abline(v=data$cum.nmrk, lty=3); abline(h=-log10(sig.bwd), lty=5); points(x=qtl.mrk, y=rep(-0.15, length(qtl.mrk)), pch=6, lwd=1.5, col="red")
if(!is.null(qtl.out)) points(x=qtl.mrk[qtl.out], y=rep(-0.15, length(qtl.out)), pch=4, lwd=1.5, col="red")
}
if(!is.null(qtl.out)) {
if(verbose) cat(" Excluding non-significant QTL", paste("...", qtl.mrk[qtl.out]), "\n")
qtl.mrk <- qtl.mrk[-qtl.out]
qtl.lgr <- qtl.lgr[-qtl.out]
}
}
if(length(qtl.mrk) > 1) {
if(verbose) cat(" Refining QTL positions ")
for(q in 1:length(qtl.mrk)) {
if(length(qtl.mrk) > 1 & (length(qtl.mrk)-length(qtl.out)) > 1) {
same.lgr <- which(!is.na(match(qtl.lgr, qtl.lgr[q])))
if(length(same.lgr) > 1) {
diff.mrk <- sort(qtl.mrk[same.lgr])
midpoint <- diff.mrk[-length(diff.mrk)] + diff(diff.mrk)/2
if(which(diff.mrk == qtl.mrk[q])[1] == 1) { # supports up to 3 QTL in the same LG
markers.out <- (data$cum.nmrk[qtl.lgr[q]]+1):floor(midpoint[1])
} else if(diff.mrk[which(diff.mrk == qtl.mrk[q])] == last(diff.mrk)) {
markers.out <- (floor(last(midpoint))+1):(data$cum.nmrk[qtl.lgr[q]+1])
} else {
markers.out <- (floor(midpoint[1])+1):(floor(midpoint[2]))
}
} else {
markers.out <- (data$cum.nmrk[qtl.lgr[q]]+1):(data$cum.nmrk[qtl.lgr[q]+1])
}
qtl.vcv <- NULL
qtl.mrk0 <- c()
for(q0 in which(!(qtl.mrk %in% c(qtl.mrk[q], qtl.mrk[qtl.out])))) {
qtl.vcv <- c(qtl.vcv, list(data$G[ind,ind,qtl.mrk[q0]]))
qtl.mrk0 <- c(qtl.mrk0, qtl.mrk[q0])
}
if(polygenes) {
Gstar <- apply(data$G[ind,ind,qtl.mrk0], MARGIN = c(1,2), sum)/length(qtl.mrk0); Gstar[1:5,1:5]
full.mod0 <- varComp(Y ~ 1, varcov = list(Gstar), offset = offset)
control <- varComp.control(start = c(coef(full.mod0, what = "var.ratio"),0))
temp <- parSapply(cl, as.character(markers.out), function(x) {
m <- as.numeric(x)
full.mod <- varComp(Y ~ 1, varcov = list(Gstar, data$G[ind,ind,m]), control = control, offset = offset)
test <- varComp.test(full.mod, null=1L)
c(st=as.numeric(test[[1]][[1]][[1]]$statistic), pv=as.numeric(test[[1]][[1]][[1]]$p.value))
})
} else {
withCallingHandlers(full.mod0 <- varComp(Y ~ 1, varcov = c(qtl.vcv), offset = offset), warning = h)
control <- varComp.control(start = c(coef(full.mod0, what = "var.ratio"),0))
temp <- parSapply(cl, as.character(markers.out), function(x) {
m <- as.numeric(x)
full.mod <- varComp(Y ~ 1, varcov = c(qtl.vcv, list(data$G[ind,ind,m])), control = control, offset = offset)
test <- varComp.test(full.mod, null=c(1:length(qtl.vcv)))
c(st=as.numeric(test[[1]][[1]][[1]]$statistic), pv=as.numeric(test[[1]][[1]][[1]]$p.value))
})
}
stat[as.numeric(colnames(temp))] <- temp["st",]
pval[as.numeric(colnames(temp))] <- temp["pv",]
if(pval[markers.out[which.max(stat[markers.out])]] <= sig.bwd) { # updates position
qtl.mrk[q] <- markers.out[which.max(stat[markers.out])]
} else { # stores non-significant
qtl.out <- c(qtl.out, q)
}
if(!is.null(plot)) {
plot(-log10(pval), xlab="Marker number", ylab="-log10(p)", main=paste("Refining round #", q, sep=""), ylim=c(0,10))
abline(v=data$cum.nmrk, lty=3); abline(h=-log10(sig.bwd), lty=5); points(x=qtl.mrk, y=rep(-0.15, length(qtl.mrk)), pch=6, lwd=1.5, col="red")
if(!is.null(qtl.out)) points(x=qtl.mrk[qtl.out], y=rep(-0.15, length(qtl.out)), pch=4, lwd=1.5, col="red")
}
}
if(verbose) {
if(length(qtl.mrk) > 1) cat("...", qtl.mrk[q], "")
if(length(qtl.mrk) > 1 & q == length(qtl.mrk)) cat("\n")
if(q > length(qtl.mrk) & !is.null(qtl.out)) cat(paste("...", qtl.mrk), "\n")
}
}
if(!is.null(qtl.out) & q == (length(qtl.out)+1)) qtl.out <- unique(c(qtl.out, q))
if(!is.null(qtl.out) & q <= length(qtl.mrk)) {
if(verbose) cat(" Excluding non-significant QTL", paste("...", qtl.mrk[qtl.out]), "\n")
# if(!is.null(plot)) {
# plot(-log10(pval), xlab="Marker number", ylab="-log10(p)", main=paste("Refining round #", q, sep=""), ylim=c(0,10))
# abline(v=data$cum.nmrk, lty=3); abline(h=-log10(sig.bwd), lty=5); points(x=qtl.mrk, y=rep(-0.15, length(qtl.mrk)), pch=6, lwd=1.5, col="red")
# if(!is.null(qtl.out)) points(x=qtl.mrk[qtl.out], y=rep(-0.15, length(qtl.out)), pch=4, lwd=1.5, col="red")
# }
qtl.mrk <- qtl.mrk[-qtl.out]
qtl.lgr <- qtl.lgr[-qtl.out]
}
}
} # keeps refining until all QTL are significant
#end backward
if(!is.null(plot)) dev.off()
end <- proc.time()
if(verbose) cat(" Calculation took", round((end - start)[3], digits = 2), "seconds\n\n")
if(length(qtl.mrk) > 0) {
nqtl <- length(qtl.mrk)
qtl <- c()
for(q in 1:nqtl) {
qtl <- c(qtl, c(qtl.lgr[q],
qtl.pos[q],
qtl.mrk[q],
names(unlist(data$lgs))[qtl.mrk[q]],
stat[qtl.mrk[q]],
pval[qtl.mrk[q]]))
}
qtls <- as.data.frame(matrix(qtl, ncol=6, byrow=TRUE), stringsAsFactors=FALSE)
colnames(qtls) <- c("LG", "Pos", "Nmrk", "Mrk", "Score", "Pval")
qtls[, c(1,2,3,5,6)] <- sapply(qtls[, c(1,2,3,5,6)], as.numeric)
qtls[, c(2,5)] <- round(qtls[, c(2,5)], digits = 2)
qtls[, c(6)] <- formatC(qtls[, c(6)], format="e", digits = 2)
if(any(qtls[, c(6)] == "0.00e+00")) qtls[which(qtls[,6] == "0.00e+00"), c(6)] <- "<2.22e-16"
} else {
qtls <- NULL
} # output QTL
results[[p]] <- list(
pheno.col=pheno.col,
stat=stat,
pval=pval,
qtls=qtls)
}
stopCluster(cl)
structure(list(data=deparse(substitute(data)),
offset.data=deparse(substitute(offset.data)),
pheno.col=model$pheno.col,
w.size=model$w.size,
sig.fwd=model$sig.fwd,
sig.bwd=sig.bwd0,
min.pvl=min.pvl,
polygenes=polygenes,
d.sint=NULL,
results=results),
class=c("qtlpoly.model","qtlpoly.optimize"))
}
#' @rdname optimize_qtl
#' @export
print.qtlpoly.optimize <- function(x, pheno.col = NULL) {
if(any(class(x) == "qtlpoly.optimize")) cat("This is an object of class 'qtlpoly.optimize'\n")
if(is.null(pheno.col)) {
pheno.col <- 1:length(x$results)
} else {
pheno.col <- which(x$pheno.col %in% pheno.col)
}
for(p in pheno.col) {
cat("\n* Trait", x$results[[p]]$pheno.col, sQuote(names(x$results)[[p]]), "\n")
if(!is.null(x$results[[p]]$qtls)) print(x$results[[p]]$qtls)
else cat("There are no QTL in the model \n")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.