Description Usage Arguments Value Author(s) References Examples
Generates the score-based genome-wide profile conditional to the selected QTL.
1 2 3 4 5 6 7 8 9 10 11 12 |
data |
an object of class |
model |
an object of class |
d.sint |
a d value to subtract from logarithm of p-value (LOP-d) for support interval calculation, e.g. d=1.5 (default) represents approximate 95% support interval. |
polygenes |
if |
n.clusters |
number of parallel processes to spawn. |
plot |
a suffix for the file's name containing plots of every QTL profiling round, e.g. "profile" (default); if |
verbose |
if |
x |
an object of class |
pheno.col |
a numeric vector with the phenotype column numbers to be plotted; if |
sint |
whether |
An object of class qtlpoly.profile
which contains a list of results
for each trait with the following components:
pheno.col |
a phenotype column number. |
stat |
a vector containing values from score statistics. |
pval |
a vector containing p-values from score statistics. |
qtls |
a data frame with information from the mapped QTL. |
lower |
a data frame with information from the lower support interval of mapped QTL. |
upper |
a data frame with information from the upper support interval of mapped QTL. |
Guilherme da Silva Pereira, gdasilv@ncsu.edu
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. http://doi.org/10.1534/genetics.120.303080.
Qu L, Guennel T, Marshall SL (2013) Linear score tests for variance components in linear mixed models and applications to genetic association studies. Biometrics 69 (4): 883–92. doi:10.1111/biom.12095.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | ## Not run:
# load raw data
data(maps)
data(pheno)
# estimate conditional probabilities using 'mappoly' package
library(mappoly)
genoprob <- lapply(maps, calc_genoprob)
# prepare data
data <- read_data(ploidy = 6, geno.prob = genoprob, pheno = pheno, step = 1)
# build null models
null.mod <- null_model(data = data, n.clusters = 4, plot = "null")
# perform forward search
search.mod <- search_qtl(data = data, model = null.mod, w.size = 15, sig.fwd = 0.01,
n.clusters = 4, plot = "search")
# optimize model
optimize.mod <- optimize_qtl(data = data, model = search.mod, sig.bwd = 0.0001,
n.clusters = 4, plot = "optimize")
# profile model
profile.mod <- profile_qtl(data = data, model = optimize.mod, d.sint = 1.5,
polygenes = FALSE, n.clusters = 4, plot = "profile")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.