Description Usage Arguments Value Author(s) References See Also Examples
Stores maximum LOD scores for a number of permutations of given phenotypes.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | permutations(
data,
offset.data = NULL,
pheno.col = NULL,
n.sim = 1000,
probs = c(0.9, 0.95),
n.clusters = NULL,
seed = 123,
verbose = TRUE
)
## S3 method for class 'qtlpoly.perm'
print(x, pheno.col = NULL, probs = c(0.9, 0.95))
## S3 method for class 'qtlpoly.perm'
plot(x, pheno.col = NULL, probs = c(0.9, 0.95))
|
data |
an object of class |
pheno.col |
a numeric vector with the phenotype columns to be analyzed; if |
n.sim |
a number of simulations, e.g. 1000 (default). |
probs |
a vector of probability values in [0, 1] representing the quantiles, e.g. c(0.90, 0.95) for the 90% and 95% quantiles. |
n.clusters |
a number of parallel processes to spawn. |
seed |
an integer for the |
verbose |
if |
x |
an object of class |
An object of class qtlpoly.perm
which contains a list of results
for each trait with the maximum LOD score per permutation.
LOD score thresholds for given quantiles for each trait.
A ggplot2 histogram with the distribution of ordered maximum LOD scores and thresholds for given quantiles for each trait.
Guilherme da Silva Pereira, gdasilv@ncsu.edu
Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping, Genetics 138: 963-971. http://www.genetics.org/content/138/3/963
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. http://doi.org/10.1534/genetics.120.303080.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Not run:
# load raw data
data(maps)
data(pheno)
# estimate conditional probabilities using mappoly package
library(mappoly)
genoprob <- lapply(maps, calc_genoprob)
# prepare data
data <- read_data(ploidy = 6, geno.prob = genoprob, pheno = pheno, step = 1)
# perform permutations
perm <- permutations(data = data, n.sim = 1000, n.clusters = 4)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.