R/MultiModal.R

Defines functions addCombinedDims .importFM import10xFeatureMatrix

Documented in addCombinedDims import10xFeatureMatrix

####################################################################
# Import Multi-Modal Data
####################################################################

#' Import Feature Matrix from 10x Feature HDF5 file.
#' 
#' This function will import the feature matrix from a 10x feature hdf5 file.
#'
#' @param input A character of paths to 10x feature hdf5 file(s). These will traditionally have a suffix similar to "filtered_feature_bc_matrix.h5".
#' @param names A character of sample names associated with each input file.
#' @param featureType The name of the feature to extract from the 10x feature file. 
#' See https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/h5_matrices for more information.
#' @export
import10xFeatureMatrix <- function(
  input = NULL, 
  names = NULL, 
  featureType = "Gene Expression"
  ){

  if(!all(file.exists(input))){
    stop("Not all input file paths exist!")
  }

  featureMats <- lapply(seq_along(input), function(y){
    message("Importing Feature Matrix ", y, " of ", length(input))
    .importFM(featureMatrix = input[y], featureType = featureType, name = names[y])
  })

  featureMats <- tryCatch({
    Reduce("cbind", featureMats)
  }, error = function(e){
    message("Error in combining individual feature matrices! Returning as a list of individual feature matrices!")
    featureMats
  })

  featureMats

}

.importFM <- function(featureMatrix = NULL, featureType = NULL, name = NULL){

  o <- h5closeAll()
  barcodes <- h5read(featureMatrix, "/matrix/barcodes")
  data <- h5read(featureMatrix, "/matrix/data")
  indices <- h5read(featureMatrix, "/matrix/indices")
  indptr <- h5read(featureMatrix, "/matrix/indptr")
  shape <- h5read(featureMatrix, "/matrix/shape")

  spMat <- sparseMatrix(
    i = indices, 
    p = indptr, 
    x = data, 
    dims = shape,
    index1 = FALSE
  )

  colnames(spMat) <- paste0(name, "#", barcodes)

  features <- h5read(featureMatrix, "/matrix/features")
  features <- lapply(seq_along(features), function(x){
    if(length(features[[x]]) == nrow(spMat)){
      if(object.size(features[[x]]) > object.size(Rle(features[[x]]))){
        df <- DataFrame(x = Rle(features[[x]]))
      }else{
        df <- DataFrame(x = features[[x]])
      }
      colnames(df) <- names(features)[x]
      df
    }else{
      NULL
    }
  })
  features <- Reduce("cbind",features[!unlist(lapply(features,is.null))])

  se <- SummarizedExperiment(assays = SimpleList(counts = spMat), rowData = features)

  rownames(se) <- features$name

  if("feature_type" %in% colnames(rowData(se))){
    if(!is.null(featureType)){
      idx <- BiocGenerics::which(rowData(se)$feature_type %bcin% featureType)
      if(length(idx) == 0){
        stop("Error featureType not within provided features!")
      }
      se <- se[idx]
    }
  }

  if("interval" %in% colnames(rowData(se))){
    idxNA <- which(rowData(se)$interval=="NA")
    if(length(idxNA) > 0){
      se <- se[-idxNA, ]
    }
    rr <- GRanges(paste0(rowData(se)$interval))
    mcols(rr) <- rowData(se)
    se <- SummarizedExperiment(assays = SimpleList(counts = assay(se)), rowRanges = rr)
  }

  idxDup <- which(rownames(se) %in% rownames(se[duplicated(rownames(se))]))
  names(idxDup) <- rownames(se)[idxDup]
  if(length(idxDup) > 0){
    dupOrder <- idxDup[order(Matrix::rowSums(assay(se[idxDup])),decreasing=TRUE)]
    dupOrder <- dupOrder[!duplicated(names(dupOrder))]
    se <- se[-as.vector(idxDup[idxDup %ni% dupOrder])]
  }

  gc()

  se

}

####################################################################
# Combined Modalities
####################################################################

#' Combine two or more modalities dimensionality reductions.
#' 
#' This function will combine two or more modalities dimensionality reductions into a single reduction.
#'
#' @param ArchRProj An `ArchRProject` object.
#' @param name The name for the combinedDims to be stored as.
#' @param reducedDims The name of the `reducedDims` objects (i.e. "IterativeLSI") to use from the designated `ArchRProject`.
#' @param dimWeights A vector of weights to be used to weight each dimensionality reduction when combining.
#' @param dimsToUse A vector containing the dimensions from the `reducedDims` objects to use.
#' @param scaleDims A boolean value that indicates whether to z-score the reduced dimensions for each cell. This is useful for minimizing
#' the contribution of strong biases (dominating early PCs) and lowly abundant populations. However, this may lead to stronger sample-specific
#' biases since it is over-weighting latent PCs. If set to `NULL` this will scale the dimensions based on the value of `scaleDims` when the
#' `reducedDims` were originally created during dimensionality reduction. This idea was introduced by Timothy Stuart.
#' @param corCutOff A numeric cutoff for the correlation of each dimension to the sequencing depth. If the dimension has a correlation to
#' sequencing depth that is greater than the `corCutOff`, it will be excluded from analysis.
#' @export
addCombinedDims <- function(
  ArchRProj = NULL, 
  name = "CombinedDims",
  reducedDims = NULL, 
  dimWeights = NULL,
  dimsToUse = NULL, 
  scaleDims = NULL,
  corCutOff = 0.75
  ){

  if(is.null(dimWeights)){
    dimWeights <- rep(1, length(reducedDims))
  }

  combinedDims <- lapply(seq_along(reducedDims), function(x){
    rD <- getReducedDims(
      ArchRProj = ArchRProj,
      reducedDims = reducedDims[x],
      dimsToUse = dimsToUse,
      scaleDims = scaleDims,
      corCutOff = corCutOff
    )
    cV <- apply(as.matrix(rD), 2, var) 
    normV <- 1 / sqrt(sum(cV))
    rD * normV * dimWeights[x]
  }) %>% Reduce("cbind", .)

  ArchRProj@reducedDims[[name]] <- SimpleList(
    matRD = combinedDims, 
    scaleDims = NA, 
    corToDepth = list(scaled = rep(0, ncol(combinedDims)), none = rep(0, ncol(combinedDims)))
  )

  ArchRProj

}
haibol2016/ArchR documentation built on June 15, 2022, 5:41 p.m.