geNet: Execution geNet algorithm

Description Usage Arguments Value Examples

View source: R/geNet_algorithm.R

Description

function to execute the geNet algorithm on a binary dataframe of genes occurrences (presence/absence data)

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
geNet(
  input_binary_df,
  clust_method = "infomap",
  type_weight = "coeff",
  cores = 1,
  out_dir,
  export_results = F,
  test_pvalue = "cor_test",
  pval_thr_pos = 0.01,
  pval_thr_neg = 0.1
)

Arguments

input_binary_df

input binary dataframe containing genes occurrences. Mandatory argument. input_binary_df is an object of class "dataframe". The rownames are the strains names, the columns names are unique genes/nodes IDs.

clust_method

clustering method. Default to "infomap".

type_weight

possible values:

  • logpvalue: the weights of the edges will be the negative log adjusted p-values

  • coeff: the weights of the edges will be the correlation coefficients values Note: This is true only for the positive edges. The negative edges will have 0 weights in both cases. The negative edges doesn't influence the topology of the network or the clustering.

cores

number of cores to use for parallel processing

out_dir

if export_results=T, select output directory

export_results

exporting geNet output in csv files?

test_pvalue

significance test to use.

  • cor_test: use Pearson correlation test approach (faster)

  • chisquare: use chi-square test approach (slower)

pval_thr_pos

threhold p-value positive edges. Default to 0.01.

pval_thr_neg

threshold p-value negative edges. Default to 0.1.

Value

list of two objects of class "ffdf".

Examples

1
## Not run: geNet(input_binary_df,clust_method="infomap",type_weight="coeff",cores=4)

haneylab/geNet documentation built on Oct. 4, 2020, 8:40 a.m.