#' for neigh
#' @import gss
#' @import quadprog
#' @export
#' @param Dmat Matrix
#' @param dvec vector
#' @param Amat vector
#' @param bvec vector
My_solve.QP0 <- function(Dmat, dvec, Amat, bvec) {
solution <- tryCatch(solve.QP(Dmat, dvec, Amat, bvec)$solution, error = function(x) NA)
if (is.na(solution[1])) {
M <- solve(Dmat)
Dmat <- t(M) %*% M
sc <- norm(Dmat, "2")
solution <- tryCatch(solve.QP(Dmat = Dmat / sc, dvec = dvec / sc, Amat = Amat, bvec = bvec, meq = 0, factorized = FALSE)$solution, error = function(x) NA)
if (is.na(solution[1])) {
Dmat <- diag(diag(Dmat))
solution <- solve.QP(Dmat, dvec, Amat, bvec)$solution
}
}
return(solution)
}
sscden0 <- function(formula, response, type = NULL, data = list(), weights,
subset, na.action = na.omit, alpha = 1.4,
id.basis = NULL, nbasis = NULL, seed = NULL,
ydomain = as.list(NULL), yquad = NULL,
prec = 1e-6, maxiter = 30, skip.iter = FALSE) {
## Obtain model frame and model terms
mf <- match.call()
mf$response <- mf$type <- mf$alpha <- NULL
mf$id.basis <- mf$nbasis <- mf$seed <- NULL
mf$ydomain <- mf$yquad <- NULL
mf$prec <- mf$maxiter <- mf$skip.iter <- NULL
term.wk <- terms.formula(formula)
ynames <- as.character(attr(terms(response), "variables"))[-1]
mf[[1]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
nobs <- nrow(mf)
cnt <- model.weights(mf)
if (is.null(cnt)) {
data$cnt <- rep(1, nobs)
} else {
data$cnt <- cnt
mf$"(weights)" <- NULL
}
## Generate sub-basis
nobs <- nrow(mf)
if (is.null(id.basis)) {
if (is.null(nbasis)) nbasis <- max(30, ceiling(10 * nobs^(2 / 9)))
if (nbasis >= nobs) nbasis <- nobs
if (!is.null(seed)) set.seed(seed)
id.basis <- sample(nobs, nbasis, prob = cnt)
} else {
if (max(id.basis) > nobs | min(id.basis) < 1) {
stop("gss error in sscden: id.basis out of range")
}
nbasis <- length(id.basis)
}
## Check inputs
mt <- attr(mf, "terms")
vars <- as.character(attr(mt, "variables"))[-1]
if (!all(ynames %in% vars)) stop("gss error in sscden: response missing in model")
xnames <- vars[!(vars %in% ynames)]
if (is.null(xnames)) stop("gss error in sscden: missing covariate")
## Set ydomain and type
mtrx.y <- FALSE
for (ylab in ynames) {
y <- mf[[ylab]]
if (!is.factor(y)) {
if (is.vector(y)) {
if (is.null(ydomain[[ylab]])) {
mn <- min(y)
mx <- max(y)
ydomain[[ylab]] <- c(mn, mx) + c(-1, 1) * (mx - mn) * .05
} else {
ydomain[[ylab]] <- c(min(ydomain[[ylab]]), max(ydomain[[ylab]]))
}
if (is.null(type[[ylab]])) {
type[[ylab]] <- list("cubic", ydomain[[ylab]])
} else {
if (length(type[[ylab]]) == 1) {
type[[ylab]] <- list(type[[ylab]][[1]], ydomain[[ylab]])
}
}
} else {
mtrx.y <- TRUE
}
}
}
ydomain <- data.frame(ydomain)
## Generate terms
term <- mkterm(mf, type)
term.labels <- labels(mt)
facs <- attr(mt, "factors")
ind.wk <- NULL
for (lab in term.labels) {
ind.wk <- c(ind.wk, any(facs[ynames, lab]))
}
term$labels <- term.labels[ind.wk]
## Generate quadrature
if (is.null(yquad)) {
if (mtrx.y) stop("gss error in sscden: no default quadrature")
yquad <- ssden0(response,
id.basis = id.basis, data = data, weights = cnt,
alpha = 2, domain = ydomain
)$quad
}
qd.pt <- yquad$pt
qd.wt <- yquad$wt
nmesh <- length(qd.wt)
## obtain unique covariate observations
x <- xx <- mf[, xnames, drop = FALSE]
xx <- apply(xx, 1, function(x) paste(x, collapse = "\r"))
x.dup.ind <- duplicated(xx)
if (!is.null(cnt)) xx <- rep(xx, cnt)
xx.wt <- as.vector(table(xx)[unique(xx)])
xx.wt <- xx.wt / sum(xx.wt)
nx <- length(xx.wt)
## Generate s, r, qd.s, and qd.r
s <- r <- qd.s <- NULL
r0 <- NULL
qd.r <- as.list(NULL)
nu <- nq <- 0
nq0 <- 0
for (label in term$labels) {
vlist <- term[[label]]$vlist
x.list <- xnames[xnames %in% vlist]
y.list <- ynames[ynames %in% vlist]
xy <- mf[, vlist]
xy.basis <- mf[id.basis, vlist]
qd.xy <- data.frame(matrix(0, nmesh, length(vlist)))
names(qd.xy) <- vlist
qd.xy[, y.list] <- qd.pt[, y.list]
if (length(x.list)) {
xx <- x[!x.dup.ind, x.list, drop = FALSE]
} else {
xx <- NULL
}
nphi <- term[[label]]$nphi
nrk <- term[[label]]$nrk
if (nphi) {
phi <- term[[label]]$phi
for (i in 1:nphi) {
nu <- nu + 1
s.wk <- phi$fun(xy, nu = i, env = phi$env)
s <- cbind(s, s.wk)
if (is.null(xx)) {
qd.s.wk <- phi$fun(qd.xy[, , drop = TRUE], nu = i, env = phi$env)
qd.wk <- matrix(qd.s.wk, nmesh, nx)
} else {
qd.wk <- NULL
for (j in 1:nx) {
qd.xy[, x.list] <- xx[rep(j, nmesh), ]
qd.wk <- cbind(qd.wk, phi$fun(qd.xy, i, phi$env))
}
}
qd.s <- array(c(qd.s, qd.wk), c(nmesh, nx, nu))
}
}
if (nrk) {
if (nrk == 1) {
rk <- term[[label]]$rk
for (i in 1:nrk) {
nq <- nq + 1
nq0 <- nq0 + 1
r.wk <- rk$fun(xy, xy.basis, nu = i, env = rk$env, out = TRUE)
r <- array(c(r, r.wk), c(nobs, nbasis, nq))
r0 <- array(c(r0, r.wk), c(nobs, nbasis, nq0))
if (is.null(xx)) {
qd.r.wk <- rk$fun(qd.xy[, , drop = TRUE], xy.basis, nu = i, env = rk$env, out = TRUE)
qd.r[[nq]] <- qd.r.wk
} else {
qd.wk <- NULL
for (j in 1:nx) {
qd.xy[, x.list] <- xx[rep(j, nmesh), ]
qd.wk <- array(
c(qd.wk, rk$fun(qd.xy, xy.basis, i, rk$env, TRUE)),
c(nmesh, nbasis, j)
)
}
qd.r[[nq]] <- qd.wk
}
}
}
if (nrk > 1) {
rtemp <- NULL
qd.r_temp <- as.list(NULL)
rk <- term[[label]]$rk
phi <- term[[label]]$phi
for (i in 1:nrk) {
nq0 <- nq0 + 1
rtemp.wk <- rk$fun(xy, xy.basis, nu = i, env = rk$env, out = TRUE)
rtemp <- array(c(rtemp, rtemp.wk), c(nobs, nbasis, i))
r0 <- array(c(r0, rtemp.wk), c(nobs, nbasis, nq0))
if (is.null(xx)) {
qd.r.wk <- rk$fun(qd.xy[, , drop = TRUE], xy.basis, nu = i, env = rk$env, out = TRUE)
qd.r_temp[[i]] <- qd.r.wk
} else {
qd.wk <- NULL
for (j in 1:nx) {
qd.xy[, x.list] <- xx[rep(j, nmesh), ]
qd.wk <- array(
c(qd.wk, rk$fun(qd.xy, xy.basis, i, rk$env, TRUE)),
c(nmesh, nbasis, j)
)
}
qd.r_temp[[i]] <- qd.wk
}
}
rk0 <- matrix(0, dim(rtemp)[1], dim(rtemp)[2])
for (j in 1:nphi) {
phix <- phi$fun(xy, j, phi$env)
phiy <- phi$fun(xy.basis, j, phi$env)
rk0 <- rk0 + outer(phix, phiy)
}
nq0 <- nq0 + 1
rtemp <- array(c(rtemp, rk0), c(nobs, nbasis, nrk + 1))
r0 <- array(c(r0, rk0), c(nobs, nbasis, nq0))
rk1 <- matrix(0, dim(rtemp)[1], dim(rtemp)[2])
for (i in 1:dim(rtemp)[3]) {
rk1 <- rk1 + rtemp[, , i]
}
nq <- nq + 1
r <- array(c(r, rk1), c(nobs, nbasis, nq))
if (is.null(xx)) {
qd.r.wk_temp <- 0
for (j in 1:nphi) {
phix <- phi$fun(qd.xy[, , drop = TRUE], j, phi$env)
phiy <- phi$fun(xy.basis, j, phi$env)
qd.r.wk_temp <- qd.r.wk_temp + outer(phix, phiy)
}
qd.r_temp[[nrk + 1]] <- qd.r.wk_temp
} else {
qd.wk_temp <- NULL
for (j in 1:nx) {
qd.xy[, x.list] <- xx[rep(j, nmesh), ]
qd.r.wk_temp <- 0
for (k in 1:nphi) {
phix <- phi$fun(qd.xy, k, phi$env)
phiy <- phi$fun(xy.basis, k, phi$env)
qd.r.wk_temp <- qd.r.wk_temp + outer(phix, phiy)
}
qd.wk_temp <- array(
c(qd.wk_temp, qd.r.wk_temp),
c(nmesh, nbasis, j)
)
}
qd.r_temp[[nrk + 1]] <- qd.wk_temp
}
qd_cur <- qd.r_temp[[1]]
for (l in 2:(nrk + 1)) {
qd_cur <- qd_cur + qd.r_temp[[l]]
}
qd.r[[nq]] <- qd_cur
}
}
}
if (!is.null(s)) {
s <- as.matrix(s[, 1])
qd.s <- array(c(qd.s[, , 1]), c(dim(qd.s)[1], dim(qd.s)[2], 1))
}
## Check s rank
if (!is.null(s)) {
nnull <- dim(s)[2]
if (qr(s)$rank < nnull) {
stop("gss error in sscden: unpenalized MLE is not unique")
}
}
## Fit the model
z <- mspcdsty(s, r, id.basis, cnt, qd.s, qd.r, xx.wt, qd.wt, prec, maxiter, alpha, skip.iter)
## Brief description of model terms
desc <- NULL
for (label in term$labels) {
desc <- rbind(desc, as.numeric(c(term[[label]][c("nphi", "nrk")])))
}
desc <- rbind(desc, apply(desc, 2, sum))
rownames(desc) <- c(term$labels, "total")
colnames(desc) <- c("Unpenalized", "Penalized")
## Return the results
obj <- c(list(
call = match.call(), mf = mf, cnt = cnt, terms = term, desc = desc,
ydomain = ydomain, yquad = yquad, xx.wt = xx.wt, x.dup.ind = x.dup.ind,
alpha = alpha, ynames = ynames, xnames = xnames, id.basis = id.basis,
skip.iter = skip.iter, r = r, r0 = r0
), z)
class(obj) <- c("sscden")
obj
}
## Fit (multiple smoothing parameter) log-linear regression model
mspcdsty <- function(s, r, id.basis, cnt, qd.s, qd.r, xx.wt, qd.wt, prec, maxiter, alpha, skip.iter) {
nobs <- dim(r)[1]
nxi <- dim(r)[2]
nqd <- dim(qd.r[[1]])[1]
nx <- length(xx.wt)
if (!is.null(s)) {
nnull <- dim(s)[2]
} else {
nnull <- 0
}
nn <- nxi + nnull
if (is.null(cnt)) cnt <- 0
## cv functions
cv.s <- function(lambda) {
fit <- .Fortran("cdennewton",
cd = as.double(cd), as.integer(nn),
as.double(10^(lambda) * q.wk), as.integer(nxi),
as.double(t(cbind(r.wk, s))), as.integer(nobs),
as.integer(sum(cnt)), as.integer(cnt),
as.double(qd.r.wk), as.integer(nqd), as.integer(nx),
as.double(xx.wt), as.double(qd.wt),
as.double(prec), as.integer(maxiter),
as.double(.Machine$double.eps), integer(nn),
wk = double(2 * (nqd + 1) * nx + 2 * nobs + nn * (2 * nn + 5)),
info = integer(1), PACKAGE = "gss"
)
if (fit$info == 1) stop("gss error in sscden: Newton iteration diverges")
if (fit$info == 2) warning("gss warning in sscden: Newton iteration fails to converge")
assign("eta", fit$wk[1:(nqd * nx)], inherits = TRUE)
assign("cd", fit$cd, inherits = TRUE)
cv <- alpha * fit$wk[nqd * nx + 2] - fit$wk[nqd * nx + 1]
alpha.wk <- max(0, log.la0 - lambda[1] - 5) * (3 - alpha) + alpha
alpha.wk <- min(alpha.wk, 3)
adj <- ifelse(alpha.wk > alpha, (alpha.wk - alpha) * fit$wk[nqd * nx + 2], 0)
cv + adj
}
cv.m <- function(theta) {
ind.wk <- theta[1:nq] != theta.old
if (sum(ind.wk) == nq) {
r.wk0 <- 0
qd.r.wk0 <- array(0, c(nqd, nxi, nx))
for (i in 1:nq) {
r.wk0 <- r.wk0 + 10^theta[i] * r[, , i]
if (length(dim(qd.r[[i]])) == 3) {
qd.r.wk0 <- qd.r.wk0 + 10^theta[i] * qd.r[[i]]
} else {
qd.r.wk0 <- qd.r.wk0 + as.vector(10^theta[i] * qd.r[[i]])
}
}
assign("r.wk", r.wk0 + 0, inherits = TRUE)
assign("qd.r.wk", qd.r.wk0 + 0, inherits = TRUE)
assign("theta.old", theta[1:nq] + 0, inherits = TRUE)
} else {
r.wk0 <- r.wk
qd.r.wk0 <- qd.r.wk
for (i in (1:nq)[ind.wk]) {
theta.wk <- (10^(theta[i] - theta.old[i]) - 1) * 10^theta.old[i]
r.wk0 <- r.wk0 + theta.wk * r[, , i]
if (length(dim(qd.r[[i]])) == 3) {
qd.r.wk0 <- qd.r.wk0 + theta.wk * qd.r[[i]]
} else {
qd.r.wk0 <- qd.r.wk0 + as.vector(theta.wk * qd.r[[i]])
}
}
}
q.wk <- 10^(lambda) * r.wk0[id.basis, ]
qd.r.wk0 <- aperm(qd.r.wk0, c(1, 3, 2))
qd.r.wk0 <- array(c(qd.r.wk0, qd.s), c(nqd, nx, nn))
qd.r.wk0 <- aperm(qd.r.wk0, c(1, 3, 2))
fit <- .Fortran("cdennewton",
cd = as.double(cd), as.integer(nn),
as.double(q.wk), as.integer(nxi),
as.double(t(cbind(r.wk0, s))), as.integer(nobs),
as.integer(sum(cnt)), as.integer(cnt),
as.double(qd.r.wk0), as.integer(nqd), as.integer(nx),
as.double(xx.wt), as.double(qd.wt),
as.double(prec), as.integer(maxiter),
as.double(.Machine$double.eps), integer(nn),
wk = double(2 * (nqd + 1) * nx + 2 * nobs + nn * (2 * nn + 5)),
info = integer(1), PACKAGE = "gss"
)
if (fit$info == 1) stop("gss error in sscden: Newton iteration diverges")
if (fit$info == 2) warning("gss warning in sscden: Newton iteration fails to converge")
assign("eta", fit$wk[1:(nqd * nx)], inherits = TRUE)
assign("cd", fit$cd, inherits = TRUE)
cv <- alpha * fit$wk[nqd * nx + 2] - fit$wk[nqd * nx + 1]
alpha.wk <- max(0, theta[1:nq] - log.th0 - 5) * (3 - alpha) + alpha
alpha.wk <- min(alpha.wk, 3)
adj <- ifelse(alpha.wk > alpha, (alpha.wk - alpha) * fit$wk[nqd * nx + 2], 0)
cv + adj
}
cv.m.wk <- function(theta) cv.scale * cv.m(theta) + cv.shift
## Initialization
theta <- -log10(apply(r[id.basis, , , drop = FALSE], 3, function(x) sum(diag(x))))
nq <- length(theta)
qd.r.wk <- array(0, c(nqd, nxi, nx))
for (i in 1:nq) {
if (length(dim(qd.r[[i]])) == 3) {
qd.r.wk <- qd.r.wk + 10^theta[i] * qd.r[[i]]
} else {
qd.r.wk <- qd.r.wk + as.vector(10^theta[i] * qd.r[[i]])
}
}
if (!nnull) {
vv.r <- 0
for (i in 1:nx) {
mu.r <- apply(qd.r.wk[, , i, drop = FALSE], 2, sum) / nqd
v.r <- apply(qd.r.wk[, , i, drop = FALSE]^2, 2, sum) / nqd
v.r <- v.r - mu.r^2
vv.r <- vv.r + xx.wt[i] * v.r
}
theta.wk <- 0
} else {
vv.s <- vv.r <- 0
for (i in 1:nx) {
mu.s <- apply(qd.s[, i, , drop = FALSE], 2, sum) / nqd
v.s <- apply(qd.s[, i, , drop = FALSE]^2, 2, sum) / nqd
v.s <- v.s - mu.s^2
mu.r <- apply(qd.r.wk[, , i, drop = FALSE], 2, sum) / nqd
v.r <- apply(qd.r.wk[, , i, drop = FALSE]^2, 2, sum) / nqd
v.r <- v.r - mu.r^2
vv.s <- vv.s + xx.wt[i] * v.s
vv.r <- vv.r + xx.wt[i] * v.r
}
theta.wk <- log10(sum(vv.s) / nnull / sum(vv.r) * nxi) / 2
}
theta <- theta + theta.wk
qd.r.wk <- aperm(10^theta.wk * qd.r.wk, c(1, 3, 2))
qd.r.wk <- array(c(qd.r.wk, qd.s), c(nqd, nx, nn))
qd.r.wk <- aperm(qd.r.wk, c(1, 3, 2))
r.wk <- 0
for (i in 1:nq) {
r.wk <- r.wk + 10^theta[i] * r[, , i]
}
q.wk <- r.wk[id.basis, ]
log.la0 <- log10(sum(vv.r) / sum(diag(q.wk))) + 2 * theta.wk
## fixed theta iteration
eta <- NULL
cd <- rep(0, nn)
la <- log.la0
mn0 <- log.la0 - 6
mx0 <- log.la0 + 6
repeat {
mn <- max(la - 1, mn0)
mx <- min(la + 1, mx0)
zz <- nlm0(cv.s, c(mn, mx))
if ((min(zz$est - mn, mx - zz$est) >= 1e-1) ||
(min(zz$est - mn0, mx0 - zz$est) < 1e-1)) {
break
} else {
la <- zz$est
}
}
if (nq == 1) {
jk1 <- cv.s(zz$est)
c <- cd[1:nxi]
if (nnull) {
d <- cd[nxi + (1:nnull)]
} else {
d <- NULL
}
eta <- matrix(eta, nqd, nx)
for (i in 1:nx) eta[, i] <- eta[, i] / sum(eta[, i])
return(list(lambda = zz$est, theta = theta, c = c, d = d, cv = jk1, fit = t(eta)))
}
## theta adjustment
qd.r.wk <- array(0, c(nqd, nxi, nx))
for (i in 1:nq) {
theta[i] <- 2 * theta[i] + log10(t(cd[1:nxi]) %*% r[id.basis, , i] %*% cd[1:nxi])
if (length(dim(qd.r[[i]])) == 3) {
qd.r.wk <- qd.r.wk + 10^theta[i] * qd.r[[i]]
} else {
qd.r.wk <- qd.r.wk + as.vector(10^theta[i] * qd.r[[i]])
}
}
if (!nnull) {
vv.r <- 0
for (i in 1:nx) {
mu.r <- apply(qd.r.wk[, , i, drop = FALSE], 2, sum) / nqd
v.r <- apply(qd.r.wk[, , i, drop = FALSE]^2, 2, sum) / nqd
v.r <- v.r - mu.r^2
vv.r <- vv.r + xx.wt[i] * v.r
}
theta.wk <- 0
} else {
vv.s <- vv.r <- 0
for (i in 1:nx) {
mu.s <- apply(qd.s[, i, , drop = FALSE], 2, sum) / nqd
v.s <- apply(qd.s[, i, , drop = FALSE]^2, 2, sum) / nqd
v.s <- v.s - mu.s^2
mu.r <- apply(qd.r.wk[, , i, drop = FALSE], 2, sum) / nqd
v.r <- apply(qd.r.wk[, , i, drop = FALSE]^2, 2, sum) / nqd
v.r <- v.r - mu.r^2
vv.s <- vv.s + xx.wt[i] * v.s
vv.r <- vv.r + xx.wt[i] * v.r
}
theta.wk <- log10(sum(vv.s) / nnull / sum(vv.r) * nxi) / 2
}
theta <- theta + theta.wk
qd.r.wk <- aperm(10^theta.wk * qd.r.wk, c(1, 3, 2))
qd.r.wk <- array(c(qd.r.wk, qd.s), c(nqd, nx, nn))
qd.r.wk <- aperm(qd.r.wk, c(1, 3, 2))
r.wk <- 0
for (i in 1:nq) {
r.wk <- r.wk + 10^theta[i] * r[, , i]
}
q.wk <- r.wk[id.basis, ]
log.la0 <- log10(sum(vv.r) / sum(diag(q.wk))) + 2 * theta.wk
log.th0 <- theta - log.la0
## fixed theta iteration
cd <- rep(0, nn)
la <- log.la0
mn0 <- log.la0 - 6
mx0 <- log.la0 + 6
repeat {
mn <- max(la - 1, mn0)
mx <- min(la + 1, mx0)
zz <- nlm0(cv.s, c(mn, mx))
if ((min(zz$est - mn, mx - zz$est) >= 1e-1) ||
(min(zz$est - mn0, mx0 - zz$est) < 1e-1)) {
break
} else {
la <- zz$est
}
}
lambda <- zz$est
## early return
if (skip.iter) {
jk1 <- cv.s(zz$est)
c <- cd[1:nxi]
if (nnull) {
d <- cd[nxi + (1:nnull)]
} else {
d <- NULL
}
eta <- matrix(eta, nqd, nx)
for (i in 1:nx) eta[, i] <- eta[, i] / sum(eta[, i])
return(list(lambda = zz$est, theta = theta, c = c, d = d, cv = jk1, fit = t(eta)))
}
## theta search
counter <- 0
r.wk <- 0
qd.r.wk <- array(0, c(nqd, nxi, nx))
for (i in 1:nq) {
r.wk <- r.wk + 10^theta[i] * r[, , i]
if (length(dim(qd.r[[i]])) == 3) {
qd.r.wk <- qd.r.wk + 10^theta[i] * qd.r[[i]]
} else {
qd.r.wk <- qd.r.wk + as.vector(10^theta[i] * qd.r[[i]])
}
}
theta.old <- theta
tmp <- abs(cv.m(theta))
cv.scale <- 1
cv.shift <- 0
if (tmp < 1 & tmp > 10^(-4)) {
cv.scale <- 10 / tmp
cv.shift <- 0
}
if (tmp < 10^(-4)) {
cv.scale <- 10^2
cv.shift <- 10
}
repeat {
zz <- nlm(cv.m.wk, theta, stepmax = 1, ndigit = 7)
if (zz$code <= 3) break
theta <- zz$est
counter <- counter + 1
if (counter >= 5) {
warning("gss warning in sscden: CV iteration fails to converge")
break
}
}
## return
jk1 <- cv.m(zz$est)
c <- cd[1:nxi]
if (nnull) {
d <- cd[nxi + (1:nnull)]
} else {
d <- NULL
}
eta <- matrix(eta, nqd, nx)
for (i in 1:nx) eta[, i] <- eta[, i] / sum(eta[, i])
return(list(lambda = lambda, theta = zz$est, c = c, d = d, cv = jk1, fit = t(eta)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.