R/dispCoxReidPowerTrend.R

Defines functions dispCoxReidPowerTrend

Documented in dispCoxReidPowerTrend

dispCoxReidPowerTrend <- function(y, design, offset=NULL, subset=10000, AveLogCPM=NULL, method.optim="Nelder-Mead", trace=0)
#	Estimate trend dispersion=a*mean^b+c
#	Gordon Smyth, Davis McCarthy, Yunshun Chen
#	16 Dec 2010.  Last modified 3 Oct 2012.
{
	y <- as.matrix(y)
	nlibs <- ncol(y)
	ntags <- nrow(y)
	if(is.null(offset)) offset <- 0
	offset <- expandAsMatrix(offset,dim(y))
	if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(y,offset=offset)
	method.optim <- match.arg(method.optim, c("Nelder-Mead", "BFGS"))

	all.zero <- rowSums(y)==0
#	if(any(all.zero)) warning("Some rows of count matrix are all zero. These rows are ignored in dispersion calculation.")
	abundance.full <- AveLogCPM
	abundance.nonzero <- abundance.full[!all.zero]
	i <- systematicSubset(subset, abundance.nonzero)
	offset.nonzero <- offset[!all.zero,]
	y.nonzero <- y[!all.zero,]
	
	fun <- function(par,y,design,offset,abundance) {
		dispersion <- exp(par[1]+par[2]*abundance) + exp(par[3])
		tryCatch(-sum(adjustedProfileLik(dispersion,y,design,offset)),error=function(e) 1e10)
	}

	par0 <- c(log(0.1),0,-5)
	out <- optim(par0,fun,y=y.nonzero[i,],design=design,offset=offset.nonzero[i,],abundance=abundance.nonzero[i],control=list(trace=trace),method=method.optim)
	out$dispersion <- exp(out$par[1]+out$par[2]*abundance.full) + exp(out$par[3])
	out$AveLogCPM <- abundance.full
	out
}
hiraksarkar/edgeR_fork documentation built on Dec. 20, 2021, 3:52 p.m.