library(R2jags)
library(devtools)
install_github('htx-r/CleaningData',force = TRUE)
library(CleaningData)
## 4. Check if the calculated dummy variables are correct.
datapath="/Users/tasneem/Desktop/TasnimPhD/multiple sclerosis/IPD data from 6 Biogen trials"
cleanBIOGENtrials <- cleanBIOGENtrials.fun(datapath)
adarr_OBJREL <- cleanBIOGENtrials$adarr_OBJREL
adsl01 <- cleanBIOGENtrials$adsl01
ModelIPDADnetmeta <- function(){
######## NMA model
for (i in 1:Np){
dropout[i]~dbern(p.d[i] )
logit(p.d[i])<-u0[studyid[i]]+(1-equals(treat[i],2))*Delta[i]+gamma[studyid[i]]*Risk[i]
Delta[i]<-d[treat[i]]-d[2]
}
#### reference treatment= CBASP+medication = 2
for (i in 1:Nstudies){
u0[i]~dnorm(0,0.01)
gamma[i]~dnorm(0,0.01)
} # for prediction model MAKE SURE TO CHANGE THIS FOR SIMPLE IPD-NMA
d[1]~dnorm(0,0.01)
d[3]~dnorm(0,0.01)
d[4]~dnorm(0,0.01)
d[2]<-0
}
adsl01_2 <- adsl01[adsl01$STUDYID%in%c('DEFINE','CONFIRM','AFFIRM'),]
#as.numeric(table(as.numeric(as.factor(adsl01_2$STUDYID))))
jagsdataIPDADnetmeta <- list(
Nstudies=3,
Npatients=as.numeric(table(as.numeric(as.factor(adsl01_2$STUDYID)))),
Np=sum(as.numeric(table(as.numeric(as.factor(adsl01_2$STUDYID))))),
studyid=as.numeric(as.factor(adsl01_2$STUDYID))-1,
dropout=adsl01_2$RELAPSE2year,
treat= as.numeric(droplevels(as.factor(adsl01_2$TRT01A))),
Risk=rnorm(sum(as.numeric(table(as.numeric(as.factor(adsl01_2$STUDYID))))))
)
IPDADnetmetaJAGSmodel <- jags.parallel(data = jagsdataIPDADnetmeta ,inits=NULL,parameters.to.save = c('d'),model.file = ModelIPDADnetmeta,
n.chains=2,n.iter = 100,n.burnin = 5,DIC=F,n.thin = 1)
str(jagsdataIPDADnetmeta)
## Freq ------------------------------------------------------------------------
# Structure the dataset as the AcuteMania: Treatment name, r, n, studyid
AcuteManiaPair = pairwise(treat = treatment, event = r, n = n,
data = AcuteMania, studlab = studyid, sm = "OR")
net1 = netmeta(AcuteManiaPair, ref = "PLA", comb.fixed = FALSE, comb.random = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.