# @file CNNTorch.R
#
# Copyright 2020 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Create setting for CNN model with python
#' @param nbfilters The number of filters
#' @param epochs The number of epochs
#' @param seed A seed for the model
#' @param class_weight The class weight used for imbalanced data:
#' 0: Inverse ratio between positives and negatives
#' -1: Focal loss
#' @param type It can be normal 'CNN', 'CNN_LSTM', CNN_MLF' with multiple kernels with different kernel size,
#' 'CNN_MIX', 'ResNet' and 'CNN_MULTI'
#'
#' @examples
#' \dontrun{
#' model.cnnTorch <- setCNNTorch()
#' }
#' @export
setCNNTorch <- function(nbfilters=c(16, 32), epochs=c(20, 50), seed=0, class_weight = 0, type = 'CNN'){
ParallelLogger::logWarn('This model has broken - please use setCNN() or setCNN2() instead ')
# set seed
if(is.null(seed[1])){
seed <- as.integer(sample(100000000,1))
}
result <- list(model='fitCNNTorch', param=split(expand.grid(nbfilters=nbfilters,
epochs=epochs, seed=seed[1],
class_weight = class_weight, type = type),
1:(length(nbfilters)*length(epochs)) ),
name='CNN Torch')
class(result) <- 'modelSettings'
return(result)
}
fitCNNTorch <- function(population, plpData, param, search='grid', quiet=F,
outcomeId, cohortId, ...){
# check plpData is libsvm format or convert if needed
if (!FeatureExtraction::isCovariateData(plpData$covariateData))
stop("Needs correct covariateData")
if(colnames(population)[ncol(population)]!='indexes'){
warning('indexes column not present as last column - setting all index to 1')
population$indexes <- rep(1, nrow(population))
}
start <- Sys.time()
population$rowIdPython <- population$rowId-1 #to account for python/r index difference #subjectId
pPopulation <- as.matrix(population[,c('rowIdPython','outcomeCount','indexes')])
result <- toSparseTorchPython(plpData,population, map=NULL, temporal=T)
outLoc <- createTempModelLoc()
# clear the existing model pickles
for(file in dir(outLoc))
file.remove(file.path(outLoc,file))
# do cross validation to find hyperParameter
hyperParamSel <- lapply(param, function(x) do.call(trainCNNTorch, listAppend(x,
list(plpData = result$data,
population = pPopulation,
train=TRUE,
modelOutput=outLoc)) ))
hyperSummary <- cbind(do.call(rbind, param), unlist(hyperParamSel))
#now train the final model and return coef
bestInd <- which.max(abs(unlist(hyperParamSel)-0.5))[1]
finalModel <- do.call(trainCNNTorch, listAppend(param[[bestInd]],
list(plpData = result$data,
population = pPopulation,
train=FALSE,
modelOutput=outLoc)))
covariateRef <- as.data.frame(plpData$covariateData$covariateRef)
incs <- rep(1, nrow(covariateRef))
covariateRef$included <- incs
covariateRef$covariateValue <- rep(0, nrow(covariateRef))
modelTrained <- file.path(outLoc)
param.best <- param[[bestInd]]
comp <- start-Sys.time()
# train prediction
pred <- as.matrix(finalModel)
pred[,1] <- pred[,1] + 1 # adding one to convert from python to r indexes
colnames(pred) <- c('rowId','outcomeCount','indexes', 'value')
pred <- as.data.frame(pred)
attr(pred, "metaData") <- list(predictionType="binary")
pred$value <- 1-pred$value
prediction <- merge(population, pred[,c('rowId','value')], by='rowId')
# return model location
result <- list(model = modelTrained,
trainCVAuc = -1, # ToDo decide on how to deal with this
hyperParamSearch = hyperSummary,
modelSettings = list(model='fitCNNTorch',modelParameters=param.best),
metaData = plpData$metaData,
populationSettings = attr(population, 'metaData'),
outcomeId=outcomeId,
cohortId=cohortId,
varImp = covariateRef,
trainingTime =comp,
dense=1,
covariateMap=result$map, # I think this is need for new data to map the same?
predictionTrain = prediction
)
class(result) <- 'plpModel'
attr(result, 'type') <- 'pythonReticulate'
attr(result, 'predictionType') <- 'binary'
return(result)
}
trainCNNTorch <- function(plpData, population, epochs=50, nbfilters = 16, seed=0, class_weight= 0, type = 'CNN', train=TRUE, modelOutput, quiet=F){
python_dir <- system.file(package='PatientLevelPrediction','python')
e <- environment()
reticulate::source_python(system.file(package='PatientLevelPrediction','python','deepTorchFunctions.py'), envir = e)
result <- train_deeptorch(population = population,
plpData = plpData,
epochs = as.integer(epochs),
nbfilters = as.integer(nbfilters),
seed = as.integer(seed),
class_weight = as.double(class_weight),
model_type = as.character(type),
train = train,
modelOutput = modelOutput,
quiet = quiet
)
if(train){
# then get the prediction
pred <- as.matrix(result)
colnames(pred) <- c('rowId','outcomeCount','indexes', 'value')
pred <- as.data.frame(pred)
attr(pred, "metaData") <- list(predictionType="binary")
pred$value <- 1-pred$value
auc <- computeAuc(pred)
writeLines(paste0('Model obtained CV AUC of ', auc))
return(auc)
}
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.