test_that("Rcpp_scaled_neg_log_hessian is the Hessian of Rcpp_scaled_neg_log_posterior", {
J <- 20
N <- 1000
true_par <- random_Gaussian_parameters(J)
sd_spike <- runif(1, 1e-3, 1e-1)
sd_slab <- runif(1, 1e-1, 1e1)
data <- generate_data_MASSIVE_model(N, 2, rep(0.3, J), true_par)
SS <- data$SS
sigma_G <- binomial_sigma_G(SS, 2)
rand_par <- random_Gaussian_parameters(J)
model <- get_random_IV_model(J)
prior <- decode_IV_model(model, sd_slab, sd_spike)
hess <- Rcpp_scaled_neg_log_hessian(J, N, SS, sigma_G, rand_par, prior)
hess_benchmark <- numDeriv::hessian(function(x) {
Rcpp_scaled_neg_log_posterior(J, N, SS, sigma_G, parameter_vector_to_list(x), prior)
}, parameter_list_to_vector(rand_par))
expect_equal(hess, hess_benchmark, tolerance = 1e-6)
})
test_that("Rcpp_scaled_neg_log_hessian is the Jacobian of Rcpp_scaled_neg_log_gradient", {
J <- 20
N <- 1000
true_par <- random_Gaussian_parameters(J)
sd_spike <- runif(1, 1e-3, 1e-1)
sd_slab <- runif(1, 1e-1, 1e1)
data <- generate_data_MASSIVE_model(N, 2, rep(0.3, J), true_par)
SS <- data$SS
sigma_G <- binomial_sigma_G(SS, 2)
rand_par <- random_Gaussian_parameters(J)
model <- get_random_IV_model(J)
prior <- decode_IV_model(model, sd_slab, sd_spike)
hess <- Rcpp_scaled_neg_log_hessian(J, N, SS, sigma_G, rand_par, prior)
hess_benchmark <- numDeriv::jacobian(function(x) {
Rcpp_scaled_neg_log_gradient(J, N, SS, sigma_G, parameter_vector_to_list(x), prior)
}, parameter_list_to_vector(rand_par))
expect_equal(hess, hess_benchmark, tolerance = 1e-6)
})
test_that("scaled_neg_log_hessian is the Hessian of scaled_neg_log_posterior", {
test <- function(log_scale) {
J <- 20
N <- 1000
true_par <- random_Gaussian_parameters(J, log_scale = log_scale)
sd_spike <- runif(1, 1e-3, 1e-1)
sd_slab <- runif(1, 1e-1, 1e1)
data <- generate_data_MASSIVE_model(N, 2, rep(0.3, J), true_par, log_scale = log_scale)
SS <- data$SS
sigma_G <- binomial_sigma_G(SS, 2)
rand_par <- random_Gaussian_parameters(J, log_scale = log_scale)
model <- get_random_IV_model(J)
prior <- decode_IV_model(model, sd_slab, sd_spike)
hess <- scaled_neg_log_hessian(J, N, SS, sigma_G, rand_par, prior, log_scale = log_scale)
hess_benchmark <- numDeriv::hessian(function(x) {
scaled_neg_log_posterior(J, N, SS, sigma_G, parameter_vector_to_list(x), prior, log_scale = log_scale)
}, parameter_list_to_vector(rand_par))
expect_equal(hess, hess_benchmark, tolerance = 1e-6)
}
test(log_scale = TRUE)
test(log_scale = FALSE)
})
test_that("scaled_neg_log_hessian is the Jacobian of scaled_neg_log_gradient", {
test <- function(log_scale) {
J <- 20
N <- 1000
true_par <- random_Gaussian_parameters(J, log_scale = log_scale)
sd_spike <- runif(1, 1e-3, 1e-1)
sd_slab <- runif(1, 1e-1, 1e1)
data <- generate_data_MASSIVE_model(N, 2, rep(0.3, J), true_par, log_scale = log_scale)
SS <- data$SS
sigma_G <- binomial_sigma_G(SS, 2)
rand_par <- random_Gaussian_parameters(J, log_scale = log_scale)
model <- get_random_IV_model(J)
prior <- decode_IV_model(model, sd_slab, sd_spike)
hess <- scaled_neg_log_hessian(J, N, SS, sigma_G, rand_par, prior, log_scale = log_scale)
hess_benchmark <- numDeriv::jacobian(function(x) {
scaled_neg_log_gradient(J, N, SS, sigma_G, parameter_vector_to_list(x), prior, log_scale = log_scale)
}, parameter_list_to_vector(rand_par))
expect_equal(hess, hess_benchmark, tolerance = 1e-6)
}
test(log_scale = TRUE)
test(log_scale = FALSE)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.