#' Helper function for plotting PMMH and PGAS estimation results
#'
#' @param outputPMCMC output object as provided by the pmmh estimatio functions
#' @param burnin burnin period
#' @param trueVals defaults to NULL e.g. when a real dataset is used; for simulated data
#' can be set to true parameter values
#'
#' @return invisible return; function called for plot side effects
#' @export
plotPMCMCoutput <- function(outputPMCMC,
burnin,
trueVals = NULL) {
if (!is.null(trueVals)) {
outTypeSimulation = TRUE
sigmaXtrue <- trueVals[1]
betaYtrue <- trueVals[2]
} else {
outTypeSimulation = FALSE
}
MM <- length(outputPMCMC[[1]])
samplesSigmaX <- outputPMCMC$samplesSigmaX
samplesBetaY <- outputPMCMC$samplesBetaY
postMeanSigX <- mean(samplesSigmaX[burnin:MM])
postMeanBetZ <- mean(samplesBetaY[burnin:MM])
graphics::par(mfrow = c(2, 4), oma = c(0, 0, 2, 0))
expressionsSigma <- list(expression(Histogramm~of~sigma),
expression(sigma),
expression(sigma~trace))
samplesList <- list(samplesSigmaX, samplesBetaY)
plotParameterPostResults(samples = samplesList,
postMean = postMeanSigX,
trueVals = sigmaXtrue,
expressionList = expressionsSigma,
burnin = burnin,
MM = MM,
outTypeSimulation,
fromAboveAfterBurnin = TRUE)
expressionsBeta <- list(expression(Histogramm~of~beta),
expression(beta),
expression(beta~trace))
samplesList <- list(samplesBetaY, samplesSigmaX)
plotParameterPostResults(samples = samplesList,
postMean = postMeanBetZ,
trueVals = betaYtrue,
expressionList = expressionsBeta,
burnin = burnin,
MM = MM,
outTypeSimulation,
fromAboveAfterBurnin = FALSE)
titleText <- paste0("Posterior Estimatation Results: ",
"(red: post. mean; green: true values if provided)")
graphics::title(main = titleText,
outer = TRUE)
graphics::par(mfrow = c(1, 1))
}
plotParameterPostResults <- function(samples,
postMean,
trueVals,
expressionList,
burnin,
MM,
outTypeSimulation,
fromAboveAfterBurnin) {
expressionMain <- expressionList[[1]]
expressionPar <- expressionList[[2]]
expressionTrace <- expressionList[[3]]
samplesMain <- samples[[1]]
samplesRemaining <- samples[[2]]
graphics::hist(samplesMain[burnin:MM],
main = expressionMain,
xlab = expressionPar)
graphics::abline(v = postMean,
col = "red",
lty = 2)
if (outTypeSimulation) graphics::abline(v = trueVals,
col = "green",
lty = 1)
graphics::plot(samplesMain,
main = "Full Trace Plot",
type = "l",
ylab = expressionTrace,
xlab = "Number of MCMC iteration")
graphics::abline(h = postMean,
col = "red",
lty = 2)
if (outTypeSimulation) graphics::abline(h = trueVals,
col = "green",
lty = 1)
graphics::plot(samplesMain[burnin:MM],
main = "Trace Plot After Burnin",
type = "l",
ylab = expressionTrace,
xlab = "Number of MCMC iteration")
graphics::abline(h = postMean,
col = "red",
lty = 2)
if (outTypeSimulation) graphics::abline(h = trueVals,
col = "green",
lty = 1)
if (fromAboveAfterBurnin) {
samplesMain <- samplesMain[burnin:MM]
samplesRemaining <- samplesRemaining[burnin:MM]
titleFromAbove <- "Sample pairs after burnin"
} else {
titleFromAbove <- "All sample pairs"
}
graphics::plot(samplesMain,
samplesRemaining,
main = titleFromAbove,
xlab = expression(sigma),
ylab = expression(beta),
col = "darkblue")
}
#' Generates a plot of boxplots of repeated log-likelihood BPF estimates
#'
#' Loglikelihood should be obtained via a previous BPF run, that estimates
#' the SV model likelihood. These are passed, along with a sequence for the
#' autoregressive parameter phi, the number of simulations (for each individual)
#' boxplot.
#'
#' @param outLogLike a matrix of dimension \code{length(parSeqPhi)} (rows)
#' times \code{numSimul}
#' @param parSeqPhi parameter sequence for phi parameter for which a
#' log-likelihood estimate is computed
#' @param numSimul number of BPF runs per element of parSeqPhi
#'
#' @return invisible return; pure side effect of a boxplot generation
#' @export
plotBoxplotLogLikeEstimates <- function(outLogLike,
parSeqPhi,
numSimul) {
parCol <- as.character(rep(parSeqPhi, times = numSimul))
llikeCol <- as.vector(outLogLike)
dataBoxplots <- data.frame(parCol, llikeCol)
names(dataBoxplots) <- c("parameter", "loglikeValue")
xExpression <- expression(paste("Parameter values for ", phi))
p <- ggplot2::ggplot(dataBoxplots,
ggplot2::aes(x = .data$parameter,
y = .data$loglikeValue)) +
ggplot2::geom_boxplot(varwidth = TRUE,
outlier.colour = "red",
outlier.shape = 1) +
ggplot2::scale_x_discrete(name = xExpression) +
ggplot2::scale_y_continuous(name = "Log-likelihood values") +
ggplot2::geom_jitter(width = 0.2)
plot(p)
return(invisible(NULL))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.