Description Usage Arguments Value Author(s) See Also Examples
TODO: Write a description
1 | inla.sens(inlaObj)
|
inlaObj |
The result from a run of |
TODO: This is an EXPERIMENTAL function!
Geir-Arne Fuglstad geirarne.fuglstad@gmail.com
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | ## Case 1: Simple linear regression on simulated data
# Number of observations
nObs = 100
# Measurement noise
sdNoise = 0.1
# Coefficients
mu = 2
beta = 1
# Covariate
x = runif(nObs)
# Generate data
y = mu + beta*x + rnorm(nObs)*sdNoise
# Make some data unobserved
nUnObs = 20
y[(nObs-nUnObs+1):nObs] = NA
# Fit the model
mod = inla(y ~ x,
data = list(x = x, y = y))
# Calculate sensitivites
inla.sens(mod)
## Case 2: Time series
# Length of time-series
nObs = 100
# Measurement noise
sdNoise = 0.1
# Autoregressive process
rho = 0.6
sdProc = 0.1
arP = matrix(0, nrow = nObs, ncol = 1)
for(i in 2:nObs)
arP[i] = rho*arP[i-1] + rnorm(1)*sdProc
tIdx = 1:nObs
# Coefficients
mu = 2
# Generate data
y = mu + arP + rnorm(nObs)*sdNoise
# Make some data unobserved
nUnObs = 20
y[(nObs-nUnObs+1):nObs] = NA
idx = 1:nObs
# Run INLA
mod = inla(y ~ f(tIdx, model = "ar1"),
data = list(y = y, tIdx = tIdx),
control.inla = list(reordering = "metis"))
# Calculate sensitivities
inla.sens(mod)
## Case 3: Epil dataset
data(Epil)
my.center = function(x) (x - mean(x))
# make centered covariates
Epil$CTrt = my.center(Epil$Trt)
Epil$ClBase4 = my.center(log(Epil$Base/4))
Epil$CV4 = my.center(Epil$V4)
Epil$ClAge = my.center(log(Epil$Age))
Epil$CBT = my.center(Epil$Trt*Epil$ClBase4)
# Define the model
formula = y ~ ClBase4 + CTrt + CBT+ ClAge + CV4 +
f(Ind, model="iid") + f(rand,model="iid")
mod = inla(formula,family="poisson", data = Epil)
# Calculate sensitivities
inla.sens(mod)
## Case 4: Spatial data
# Number of observations
nObs = 100
# Measurement noise
sdNoise = 0.2
# Spatial process
sdProc = 1.0
rho0 = 0.2
# Coefficients
beta0 = 1
beta1 = 2
# Generate spatial data + measurement noise
loc = cbind(runif(nObs), runif(nObs))
dd = as.matrix(dist(loc))
Sig = sdProc^2*inla.matern.cov(nu = 1, kappa = sqrt(8)/rho0, dd, corr = TRUE)
L = t(chol(Sig))
u = L
# Generate Covariate
x = runif(nObs)-0.5
# Combine to observations
y = beta0 + beta1*x + u
# Number of unobserved
nUnObs = 2
y[1:nUnObs] = NA
# Mesh
mesh = inla.mesh.2d(loc, max.edge = 0.05, cutoff = 0.05)
# Make SPDE object
spde = inla.spde2.matern(mesh)
spde2 = inla.spde2.matern(mesh, constr = TRUE)
# Make A matrix
A = inla.spde.make.A(mesh, loc)
# Stack
X = cbind(1, x)
stk = inla.stack(data = list(y = y), A = list(A, 1),
effects = list(field = 1:spde$n.spde,
X = X))
# Run INLA
mod1 = inla(y ~ -1 + X + f(field, model = spde),
data = inla.stack.data(stk),
control.predictor = list(A = inla.stack.A(stk)),
control.family = list(prior = "pcprec",
param = c(3, 0.05)))
mod2 = inla(y ~ -1 + X + f(field, model = spde2),
data = inla.stack.data(stk),
control.predictor = list(A = inla.stack.A(stk)),
control.family = list(prior = "pcprec",
param = c(3, 0.05)))
# Calculate sensitivities
res1 = inla.sens(mod1)
res2 = inla.sens(mod2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.