#' Add prophet forecast model
#'
#' \code{add_prophet_forecast_model} is a function to add a single prophet
#' forecast model to a (named) list of forecast models. The forecast model is
#' created based on a parameter value to determine the flexibility of automatic
#' changepoint selection, which is then used to forecast a specific number of
#' periods ahead.
#'
#' @param fc_models A named list of forecast models, with for each forecast
#' model a list with the model itself and a table with forecast values.
#' @param ts_object_train A time series object, which contains only the training
#' data.
#' @param ts_object_valid A time series object, which contains the validation
#' data. This is used for multivariate frameworks, thus it should have the
#' forecasted/actual values of the external regressors as well.
#' @param fc_name A character string specifying the name to be used for the new
#' model that is added to the list of existing forecast models.
#' @param model_type A character string indicating whether a univariate model
#' (without external regressors) or a multivariate model (with external
#' regressors) should be estimated.
#' @param changepoint_prior_scale A positive numeric value modulating the
#' flexibility of the automatic changepoint selection, where large values will
#' allow many changepoints, while small values will allow few changepoints.
#' @param periods_ahead A positive integer value indicating the number of
#' periods to forecast ahead.
#' @param periods_history A positive integer value indicating the number of
#' historic datapoints to use for training, which is only relevant for
#' specific forecast methods such as drift and mean.
#' @param verbose Boolean, which is set to TRUE if status updates are valued, or
#' set to FALSE if they are not.
#'
#' @return A named list of forecast models, with for each forecast model a list
#' with the model itself and a table with forecast values.
#'
#' @importFrom magrittr '%>%'
#' @import tibble
#' @import dplyr
#' @importFrom crayon make_style bold italic bgRed red green blue
#' @import Rcpp
#' @import rstan
#' @import prophet
#' @importFrom tstools period_delta period_to_first_day
#' transform_data_to_ts_object
#'
#' @examples
#' ts_object_train <- tstools::initialize_ts_forecast_data(
#' data = dummy_gasprice,
#' date_col = "year_month",
#' col_of_interest = "gasprice",
#' group_cols = c("state", "oil_company"),
#' xreg_cols = c("spotprice", "gemprice")
#' ) %>%
#' dplyr::filter(grouping == "state = New York & oil_company = CompanyA") %>%
#' tstools::transform_data_to_ts_object()
#' add_prophet_forecast_model(
#' fc_models = list(),
#' ts_object_train = ts_object_train,
#' fc_name = "fc_prophet_050cps",
#' changepoint_prior_scale = 0.050,
#' periods_ahead = 12,
#' verbose = T
#' )
add_prophet_forecast_model <- function(fc_models, ts_object_train, ts_object_valid = NULL, fc_name, model_type = c("univariate", "multivariate"), changepoint_prior_scale, periods_ahead = 1, periods_history = Inf, keep_fc_model_objects = FALSE, verbose = FALSE, log_message = "") {
# Check to make sure fc_models is a list
if (!is.list(fc_models) | is.data.frame(fc_models)) stop(paste0("Object 'fc_models' is of class ",paste0(class(fc_models), collapse = "/")," ... \n\n Put in a list!"))
# Check to make sure ts_object_train is a times series object
if (!is.ts(ts_object_train)) stop(paste0("Object 'ts_object_train' is of class ",paste0(class(ts_object_train), collapse = "/")," ... \n\n Put in a time series object!"))
# Check to make sure fc_name is a string
if (!is.character(fc_name)) stop(paste0("Parameter 'fc_name' is of class ",paste0(class(fc_name), collapse = "/")," ... \n\n Put in a character string!"))
# Check to make sure ts_valid_data has enough observations if multivariate framework
model_type <- match.arg(model_type)
if (model_type == "multivariate") {
if (is.null(ts_object_valid)) {stop("The parameter 'ts_object_valid' is required for a multivariate model!")} else {
if (nrow(ts_object_valid) < periods_ahead) {
message <- paste0("Number of observations in 'ts_object_valid' (", nrow(ts_object_valid), ") is smaller than required periods_ahead (", periods_ahead, ")!")
stop(message)
}
}
}
# Check to make sure changepoint_prior_scale is a non-negative number
if (!(is.numeric(changepoint_prior_scale) & changepoint_prior_scale > 0)) {
message <- paste0("The parameter 'changepoint_prior_scale' should be a positive numeric value, instead of '",changepoint_prior_scale,"' ... ")
stop(message)
}
# Check to make sure periods_ahead is a non-negative whole number
if (!(is.numeric(periods_ahead) & periods_ahead > 0 & periods_ahead == suppressWarnings(as.integer(periods_ahead)))) {
message <- paste0("The parameter 'periods_ahead' should be a positive integer value, instead of '",periods_ahead,"' ... ")
stop(message)
}
# Check to make sure periods_history is a non-negative whole number
if (periods_history != Inf) {
if (!(is.numeric(periods_history) & periods_history > 0 & periods_history == suppressWarnings(as.integer(periods_history)))) {
message <- paste0("The parameter 'periods_history' should be a positive integer value, instead of '",periods_history,"' ... ")
stop(message)
}
}
# Return fc_models as is if forecast is already available
if (fc_name %in% names(fc_models)) {
return(fc_models)
}
# Record start time
start_time <- Sys.time()
# Determine the periods for which a forecast needs to be made
fc_periods <- get_fc_periods(
ts_object_train = ts_object_train,
periods_ahead = periods_ahead
)
# Reduce length of the training set
ts_object_train <- trim_ts_object(
ts_object = ts_object_train,
max_length = periods_history,
from_left = F
)
# Prepare data for prophet forecasting
prophet_data <- ts_object_train %>%
ts_object_to_tibble() %>%
dplyr::mutate(
ds = tstools::period_to_first_day(period),
y = col_of_interest
) %>%
dplyr::select(c("ds", "y", attr(ts_object_train, "xreg_cols")))
# Check number of data points
n_points <- nrow(ts_object_train)
n_changepoints <- round(n_points * (2/3), 0)
n_changepoints <- ifelse(n_changepoints < 25, n_changepoints, 25)
# Determine seasonality
yearly_seasonality <- ifelse(12 %in% attr(ts_object_train, "seasonality"), TRUE, FALSE)
# Create the model
prophet_model <- prophet::prophet(
n.changepoints = n_changepoints,
yearly.seasonality = yearly_seasonality,
weekly.seasonality = F,
daily.seasonality = F,
changepoint.prior.scale = changepoint_prior_scale
)
# Add regressors if required
if (model_type == "multivariate") {
for (xreg_col in attr(ts_object_train, "xreg_cols")) {
prophet_model <- prophet_model %>%
prophet::add_regressor(
name = xreg_col,
prior.scale = changepoint_prior_scale
)
}
}
# Set seed to enable reproduction of results
set.seed(42)
# Fit the model (with error catching)
sink(file = file.path(tempdir(),"prophet_forecast_jibberish.txt"))
fc_model <- suppressWarnings(
try(
expr = {
prophet::fit.prophet(
m = prophet_model,
df = prophet_data
)
},
silent = TRUE
)
)
sink()
# Check for errors
if (grepl("Error",fc_model[1])) {
# Show error messages
if (verbose) {
log_message <- paste0(red(bold(format(Sys.time(), "%H:%M:%S"))), " - ", log_message, ":")
message <- paste(log_message, bgRed("ERROR"), "for calling forecast method:", bold(paste0("prophet (CPS = ",changepoint_prior_scale,")")))
ParallelLogger::logError(message)
message <- paste(log_message, italic(red(fc_model)))
ParallelLogger::logError(message)
}
# Return without adding a model
return(fc_models)
}
# Create fc_data for prophet
prophet_fc_data <- prophet::make_future_dataframe(
m = fc_model,
periods = periods_ahead,
freq = "month",
include_history = F
)
# Add regressors if required
if (model_type == "multivariate") {
prophet_fc_data <- ts_object_valid %>%
ts_object_to_tibble() %>%
dplyr::select(attr(ts_object_train, "xreg_cols")) %>%
dplyr::slice(1:periods_ahead) %>%
dplyr::bind_cols(
x = prophet_fc_data,
y = .
)
}
# Create the forecast (with error catching)
fc_data <- suppressWarnings(
try(
expr = {
predict(
object = fc_model,
prophet_fc_data
)
},
silent = TRUE
)
)
# Check for errors
if (grepl("Error",fc_data[1])) {
# Show error messages
if (verbose) {
log_message <- paste0(red(bold(format(Sys.time(), "%H:%M:%S"))), " - ", log_message, ":")
message <- paste(log_message, bgRed("ERROR"), "for calling forecast method:", bold(paste0("prophet (CPS = ",changepoint_prior_scale,")")))
ParallelLogger::logError(message)
message <- paste(log_message, italic(red(fc_data)))
ParallelLogger::logError(message)
}
# Return without adding a model
return(fc_models)
}
# Determine fc_date
fc_date <- tstools::period_delta(min(fc_periods), -1)
# Calculate duraction in seconds
duration <- paste0(format.default(round(as.numeric(difftime(Sys.time(), start_time, units = 'sec')), 1), nsmall = 1), "s")
# Message
if (verbose) {
# Create style
ING_orange <- make_style("#FF6200")
# Create log_message
log_message <- paste0(ING_orange(bold(format(Sys.time(), "%H:%M:%S"))), " - ", log_message)
log_message <- paste0(log_message, "(in ", green(duration), "): ", blue(paste0("prophet (CPS = ",changepoint_prior_scale,")")))
ParallelLogger::logInfo(log_message)
}
# Decide on keeping fc_model object
if (keep_fc_model_objects) {
model <- fc_model
} else {
model <- fc_model$params
}
# Combine data for new forecast model
fc_model <- list(
fc_model =
list(
model = model,
fc_data = tibble::tibble(
fc_date = fc_date,
period = fc_periods,
fc_value = as.numeric(fc_data$yhat)
)
)
)
# Overwrite name of the list
names(fc_model) <- fc_name
# Combine within list of existing forecast models and return
fc_models %>%
append(fc_model) %>%
return()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.