suppressMessages({
library('cowplot')
library('sleuth')
library(rhdf5)
})
sample_id <- c("NAS_T-R-1","NAS_T-R-4","NAS_T-R-5","NAS_T-R-6","NAS_T-R-7","NAS_T-R-8","NAS_T-R-9","NAS_T-R-10",
"NAS_T-R-11","NAS_T-R-12","NAS_T-R-13","NAS_T-R-14","NAS_T-R-15","NAS_T-R-16","NAS_T-R-17",
"NAS_T-R-19","NAS_T-R-20","NAS_T-R-25","NAS_T-R-29","NAS_T-R-30","NAS_T-R-31","NAS_T-R-32",
"NAS_T-R-33","NAS_T-R-34","NAS_T-R-35","NAS_T-R-36","NAS_T-R-37","NAS_T-R-40","NAS_T-R-41",
"NAS_T-R-42","Hepa_10619","Hepa_10622","Hepa_10627","Hepa_10628","Hepa_10632","Hepa_10634",
"Hepa_10635","Hepa_10584","Hepa_10594","Hepa_10615","Hepa14","Hepa19","Hepa20","Hepa21",
"Hepa23","Hepa26","CUN_10396","CUN_10426","CUN_10446","CUN_10454","CUN_10474","CUN_10509",
"CUN_10525","CUN_10532","CUN_10543","CUN_10610","CUN_10629","CUN_10639","CUN_10640",
"CUN_10642","CUN_10646","CUN_10647")
filename <- dir("KallistoOutput/")
str <- strsplit(filename, "_")
kal_dirs <- file.path("KallistoOutput",sample_id, "abundance.h5")
kal_dirs
condition <- c(rep("Nasir",30), rep("Hepa",16), rep("CUN",16))
metadata <- data.frame(sample_id, condition, kal_dirs)
names(metadata) <- c("sample","condition","path")
metadata
load("G:/Mi unidad/NASIR/ttg_homo_sapiens_ona.RData")
for(t in 1:3)
{
metadata[,t] <- as.character(metadata[,t])
}
mer <- merge(fil, ttg, by = "target_id", all.x = TRUE)
mer2 <- merge(mer, so$sample_to_covariates, by = "sample", all.x = T)
kountk <- as.tibble(mer2[,c("sample","ext_gene","est_counts","condition")])
names(kountk)[2:3] <- c("transcript","count")
library(tidybulk)
tt = kountk %>% tidybulk(sample, transcript, count)
tt %>%
# call analysis functions
get_bibliography()
tt.aggr = tt %>% aggregate_duplicates()
tt.norm = tt.aggr %>% identify_abundant(factor_of_interest = condition) %>% scale_abundance()
tt.norm %>%
ggplot(aes(count_scaled + 1, group=sample, color=condition)) +
geom_density() +
scale_x_log10()
tt.norm %>%
ggplot(aes(count_scaled + 1, group=sample, color=sample)) +
geom_density() +
scale_x_log10()
# +
# my_theme
tt.norm.variable = tt.norm %>% keep_variable()
tt.norm.MDS =
tt.norm %>%
reduce_dimensions(method="MDS", .dims = 6)
tt.norm.MDS %>% pivot_sample() %>% select(contains("Dim"), everything())
tt.norm.MDS %>%
pivot_sample() %>%
GGally::ggpairs(columns = 6:9, ggplot2::aes(colour=condition))
tt.norm.PCA =
tt.norm %>%
reduce_dimensions(method="PCA", .dims = 6)
tt.norm.PCA %>% pivot_sample() %>% select(contains("PC"), everything())
tt.norm.PCA %>%
pivot_sample() %>%
GGally::ggpairs(columns = 6:9, ggplot2::aes(colour=condition))
# tt.norm.tSNE =
# tt.aggr %>%
# identify_abundant() %>%
# reduce_dimensions(
# method = "tSNE",
# perplexity=10,
# pca_scale =TRUE
# )
#
#
# tt.norm.tSNE %>%
# pivot_sample() %>%
# select(contains("tSNE"), everything())
#
# tt.norm.tSNE %>%
# pivot_sample() %>%
# ggplot(aes(x = `tSNE1`, y = `tSNE2`, color=Call)) + geom_point()
#
# tt.norm.MDS.rotated =
# tt.norm.MDS %>%
# rotate_dimensions(`Dim1`, `Dim2`, rotation_degrees = 45, action="get")
#
# tt.norm.MDS.rotated %>%
# ggplot(aes(x=`Dim1`, y=`Dim2`, color=`Cell type` )) +
# geom_point()
#
#
# tt.norm.MDS.rotated %>%
# ggplot(aes(x=`Dim1 rotated 45`, y=`Dim2 rotated 45`, color=`Cell type` )) +
# geom_point()
tt.de =
tt.aggr %>%
test_differential_abundance( ~ condition, action="get")
tt.de
# tt.de =
# tt %>%
# identify_abundant(factor_of_interest = condition) %>%
# test_differential_abundance(
# ~ 0 + condition,
# .contrasts = c( "condition1 - condition0"),
# action="get"
# )
#
# tt.norm.adj =
# tt.norm %>% adjust_abundance( ~ factor_of_interest + batch)
tt.cibersort =
tt.aggr %>%
deconvolve_cellularity(action="get", cores=1)
library(tidyverse)
tt.cibersort %>%
select(contains("cibersort:"), everything()) %>%
gather(`Cell type inferred`, `proportion`, 1:22) %>%
ggplot(aes(x=`Cell type inferred`, y=proportion, fill=condition)) +
geom_boxplot() +
facet_wrap(~condition) +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5), aspect.ratio=1/5)
tt.aggr %>%
test_differential_cellularity( ~ condition )
# tt %>%
# test_differential_cellularity(survival::Surv(time, dead) ~ .)
# tt.norm.cluster = tt.norm.MDS %>%
# cluster_elements(method="kmeans", centers = 2, action="get" )
#
# tt.norm.cluster %>%
# ggplot(aes(x=`Dim1`, y=`Dim2`, color=`cluster kmeans`)) +
# geom_point()
#
# tt.norm.SNN =
# tt.norm.tSNE %>%
# cluster_elements(method = "SNN")
#
# tt.norm.SNN %>%
# pivot_sample() %>%
# select(contains("tSNE"), everything())
#
# tt.norm.SNN %>%
# pivot_sample() %>%
# gather(source, Call, c("cluster SNN", "Call")) %>%
# distinct() %>%
# ggplot(aes(x = `tSNE1`, y = `tSNE2`, color=Call)) + geom_point() + facet_grid(~source)
# Do differential transcription between clusters
# tt.norm.SNN %>%
# mutate(factor_of_interest = `cluster SNN` == 3) %>%
# test_differential_abundance(
# ~ factor_of_interest,
# action="get"
# )
#
# tt.norm.non_redundant =
# tt.norm.MDS %>%
# remove_redundancy( method = "correlation" )
#
# tt.norm.non_redundant %>%
# pivot_sample() %>%
# ggplot(aes(x=`Dim1`, y=`Dim2`, color=`Cell type`)) +
# geom_point()
# counts_ensembl %>% ensembl_to_symbol(ens)
tt %>% describe_transcript() %>% select(transcript, description, everything())
# tidybulk ----------------------------------------------------------------
# https://github.com/stemangiola/tidybulk
# devtools::install_github("stemangiola/tidybulk")
library(tidybulk)
tt = counts %>% tidybulk(sample, transcript, count)
tt %>%
# call analysis functions
get_bibliography()
tt.aggr = tt %>% aggregate_duplicates()
tt.norm = tt.aggr %>% identify_abundant(factor_of_interest = condition) %>% scale_abundance()
tt.norm %>%
ggplot(aes(count_scaled + 1, group=sample, color=`Cell type`)) +
geom_density() +
scale_x_log10()
# +
# my_theme
tt.norm.variable = tt.norm %>% keep_variable()
tt.norm.MDS =
tt.norm %>%
reduce_dimensions(method="MDS", .dims = 6)
tt.norm.MDS %>% pivot_sample() %>% select(contains("Dim"), everything())
tt.norm.MDS %>%
pivot_sample() %>%
GGally::ggpairs(columns = 10:15, ggplot2::aes(colour=`Cell type`))
tt.norm.PCA =
tt.norm %>%
reduce_dimensions(method="PCA", .dims = 6)
tt.norm.PCA %>% pivot_sample() %>% select(contains("PC"), everything())
tt.norm.PCA %>%
pivot_sample() %>%
GGally::ggpairs(columns = 10:12, ggplot2::aes(colour=`Cell type`))
tt.norm.tSNE =
breast_tcga_mini %>%
tidybulk( sample, ens, count_scaled) %>%
identify_abundant() %>%
reduce_dimensions(
method = "tSNE",
perplexity=10,
pca_scale =TRUE
)
tt.norm.tSNE %>%
pivot_sample() %>%
select(contains("tSNE"), everything())
tt.norm.tSNE %>%
pivot_sample() %>%
ggplot(aes(x = `tSNE1`, y = `tSNE2`, color=Call)) + geom_point()
tt.norm.MDS.rotated =
tt.norm.MDS %>%
rotate_dimensions(`Dim1`, `Dim2`, rotation_degrees = 45, action="get")
tt.norm.MDS.rotated %>%
ggplot(aes(x=`Dim1`, y=`Dim2`, color=`Cell type` )) +
geom_point()
tt.norm.MDS.rotated %>%
ggplot(aes(x=`Dim1 rotated 45`, y=`Dim2 rotated 45`, color=`Cell type` )) +
geom_point()
tt.de =
tt %>%
test_differential_abundance( ~ condition, action="get")
tt.de
tt.de =
tt %>%
identify_abundant(factor_of_interest = condition) %>%
test_differential_abundance(
~ 0 + condition,
.contrasts = c( "conditionTRUE - conditionFALSE"),
action="get"
)
tt.norm.adj =
tt.norm %>% adjust_abundance( ~ factor_of_interest + batch)
tt.cibersort =
tt %>%
deconvolve_cellularity(action="get", cores=1)
library(tidyverse)
tt.cibersort %>%
select(contains("cibersort:"), everything()) %>%
gather(`Cell type inferred`, `proportion`, 1:22) %>%
ggplot(aes(x=`Cell type inferred`, y=proportion, fill=`Cell type`)) +
geom_boxplot() +
facet_wrap(~`Cell type`) +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5), aspect.ratio=1/5)
tt %>%
test_differential_cellularity( ~ condition )
tt %>%
test_differential_cellularity(survival::Surv(time, dead) ~ .)
tt.norm.cluster = tt.norm.MDS %>%
cluster_elements(method="kmeans", centers = 2, action="get" )
tt.norm.cluster %>%
ggplot(aes(x=`Dim1`, y=`Dim2`, color=`cluster kmeans`)) +
geom_point()
tt.norm.SNN =
tt.norm.tSNE %>%
cluster_elements(method = "SNN")
tt.norm.SNN %>%
pivot_sample() %>%
select(contains("tSNE"), everything())
tt.norm.SNN %>%
pivot_sample() %>%
gather(source, Call, c("cluster SNN", "Call")) %>%
distinct() %>%
ggplot(aes(x = `tSNE1`, y = `tSNE2`, color=Call)) + geom_point() + facet_grid(~source)
# Do differential transcription between clusters
tt.norm.SNN %>%
mutate(factor_of_interest = `cluster SNN` == 3) %>%
test_differential_abundance(
~ factor_of_interest,
action="get"
)
tt.norm.non_redundant =
tt.norm.MDS %>%
remove_redundancy( method = "correlation" )
tt.norm.non_redundant %>%
pivot_sample() %>%
ggplot(aes(x=`Dim1`, y=`Dim2`, color=`Cell type`)) +
geom_point()
# counts_ensembl %>% ensembl_to_symbol(ens)
tt %>% describe_transcript() %>% select(transcript, description, everything())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.