# -------------------------------------------------
# Snow crab --- Areal unit modelling Hurdle / Delta model
# combination of three models via posterior simulation
# 1. Poisson on positive valued numbers offset by swept are
# 2. Meansize in space and time
# 3 Presence-absence
# the convolution of all three after simulation is called a Hurdle or Delta model
# -------------------------------------------------
# this is copied from 03.biomass_index_carstm.r
# but stripped down with modifications for comparisons demanded by 2023 CSAS review
# actual comparisons begin toward the bottom of this file (lines 500+).
# This next section is generating the fitted results of the deletion
# -------------------------------------------------
# Part 1 -- construct basic parameter list defining the main characteristics of the study
source( file.path( code_root, "bio_startup.R" ) )
require(bio.snowcrab) # loadfunctions("bio.snowcrab")
year.assessment = 2022
yrs = 1999:year.assessment
spec_bio = bio.taxonomy::taxonomy.recode( from="spec", to="parsimonious", tolookup=2526 )
snowcrab_filter_class = "fb" # fishable biomass (including soft-shelled ) "m.mat" "f.mat" "imm"
# key name
carstm_model_label= paste( "1999_2022_variation2", snowcrab_filter_class, sep="_" )
# params for number
pN = snowcrab_parameters(
project_class="carstm",
yrs=yrs,
areal_units_type="tesselation",
family = "nbinomial",
carstm_model_label= carstm_model_label,
selection = list(
type = "number",
biologicals=list( spec_bio=spec_bio ),
biologicals_using_snowcrab_filter_class=snowcrab_filter_class
)
)
# params for mean size .. mostly the same as pN
pW = snowcrab_parameters(
project_class="carstm",
yrs=yrs,
areal_units_type="tesselation",
family = "gaussian",
carstm_model_label= carstm_model_label,
selection = list(
type = "meansize",
biologicals=list( spec_bio=spec_bio ),
biologicals_using_snowcrab_filter_class=snowcrab_filter_class
)
)
# params for probability of observation
pH = snowcrab_parameters(
project_class="carstm",
yrs=yrs,
areal_units_type="tesselation",
family = "binomial", # "binomial", # "nbinomial", "betabinomial", "zeroinflatedbinomial0" , "zeroinflatednbinomial0"
carstm_model_label= carstm_model_label,
selection = list(
type = "presence_absence",
biologicals=list( spec_bio=spec_bio ),
biologicals_using_snowcrab_filter_class=snowcrab_filter_class
)
)
# use what was defined in the main script
sppoly=areal_units( p=pN )
additional_features = snowcrab_mapping_features(pN) # for mapping below
tmap_mode("plot")
# -- identify area to drop
# filter out candidate time period
# this scenario tries to mimic the effect of the incomplete sampling in 2022
# using stations that were within 5 km of the stations completed in 2022
fnout = file.path( pN$modeldir, pN$carstm_model_label, "unsampled_polygon.dat" )
if (!file.exists(fnout)) {
project.library( "aegis", "aegis.polygons" )
RLibrary( "raster" )
message("FIXE ME::: deprecated libs, use sf/stars")
# plot background map and using mouse interaction define region:
# left mouse click to register, right mouse click to finish (or [Esc] is using Rstudio)
maps::map( database="worldHires", regions=c("Canada", "USA") ,
xlim=c(-66, -55 ), ylim=c(42, 47), fill=FALSE, plot=TRUE )
set = snowcrab.db( DS="set.clean")
points(lat~lon, set[ set$yr==2021,], pch=19, col="red" )
points(lat~lon, set[ set$yr==2022,], pch=22, cex=2 )
X = locator(type="o" )
X = as.data.frame( X)
colnames(X) = c("lon", "lat")
X = rbind(X, X[1,])
lines (X)
write.csv(X, fnout)
}
X = read.csv(fnout) # outline of unsampled region
set = snowcrab.db( DS="set.clean")
set$id = paste(set$trip, set$set, sep=".")
u = which(set$yr == 2022)
Z = set[set$yr==2015, ] # year to test removal
a = which(point.in.polygon(Z$lon, Z$lat, X$lon, X$lat) != 0 )
todrop = Z$id[a]
tokeep = Z$id[-a]
if (0) {
# plot these locations
require(ggplot2)
crs_domain = st_crs( "+proj=utm +ellps=WGS84 +zone=20 +units=km" )
domain = st_union( st_as_sf(Z, coords=c("lon", "lat")) )
st_crs(domain) = st_crs(projection_proj4string("lonlat_wgs84"))
domain = st_transform(domain, crs_domain )
bb = st_bbox(domain)
isobaths = c( 50, 100, 150, 200, 250, 300, 350, 400 )
isobs = aegis.bathymetry::isobath_db( depths=isobaths, project_to=crs_domain )
isobs = st_intersection(isobs, domain)
coastline = st_transform( polygons_rnaturalearth(countries=c("United States of America", "Canada"),
xlim=c(-80,-40), ylim=c(38, 60)), st_crs(crs_domain) )
plt = ggplot() +
geom_point(data=Z, aes(x=plon, y=plat, colour="gray", alpha=1.0) ) +
geom_point(data=Z[a,], aes(x=plon, y=plat, colour="darkorange", alpha=1.0) ) +
coord_sf(xlim = c(bb[c("xmin", "xmax")]), ylim = c(bb[c("ymin", "ymax")]) ) +
coord_fixed()
dev.new(width=14, height=8, pointsize=20)
print(plt)
}
# ------------------------------------------------
# Part 2 -- spatiotemporal statistical model
if ( spatiotemporal_model ) {
# total numbers
sppoly = areal_units( p=pN )
M = snowcrab.db( p=pN, DS="carstm_inputs", sppoly=sppoly ) # will redo if not found
# can also just copy datafile: carstm_inputs_snowcrab~tesselation~1~snowcrab~24~1~none~snowcrab_managementareas.rdata
# into working directory to speed things up
# variation2: drop number, size info:: this forces prediction of these points
Z_M = match(todrop, M$id) # in yr selected (n=83)
Z_N = match(tokeep, M$id) # in yr selected (n=330)
sd(M$totwgt[Z_M] / M$data_offset[Z_M], na.rm=T) # [1] 5.4
sd(M$totwgt[Z_N] / M$data_offset[Z_N], na.rm=T) # [1] 3.8
sd(M$totwgt[Z_M] / M$data_offset[Z_M], na.rm=T) # [1] 9.65 .. se= 9.65 /sqrt(83) = 1.06
sd(M$totwgt[Z_N] / M$data_offset[Z_N], na.rm=T) # [1] 8.46 .. se=8.46/sqrt(330) = 0.81
sd(M$totwgt[Z_M] / M$data_offset[Z_M], na.rm=T) / sqrt(83) # [1] 9.65 .. se= 9.65 /sqrt(83) = 1.06
sd(M$totwgt[Z_N] / M$data_offset[Z_N], na.rm=T) /sqrt(330) # [1] 8.46 .. se=8.46/sqrt(330) = 0.81
io = which(M$tag=="observations")
ip = which(M$tag=="predictions")
iq = unique( c( which( M$totno > 0), ip ) )
iw = unique( c( which( M$totno > 5), ip ) ) # need a good sample to estimate mean size
Mdropped = M[ Z_M, ]
M[ Z_M, "totno"] = NA
M[ Z_M, "pa"] = NA
M[ Z_M, "meansize"] = NA
# number
fit = NULL; gc()
fit = carstm_model( p=pN, data=M[ iq, ], sppoly=sppoly,
posterior_simulations_to_retain="predictions", improve.hyperparam.estimates=TRUE
)
MO = M[ iq, ]
ii = match( todrop, MO$id )
jj = match( todrop, Mdropped$id )
observed = Mdropped[jj, "totno"] / Mdropped[jj, "data_offset"]
fitted = fit$summary.fitted.values[["mean"]] [ii]
plot( fitted ~ observed )
abline(0,1)
cor( fitted, observed, use="pairwise.complete.obs" )
cor( fitted, observed, use="pairwise.complete.obs", "spearman" )
# mean size
fit = NULL; gc()
fit = carstm_model( p=pW, data=M[ iw, ], sppoly = sppoly,
posterior_simulations_to_retain="predictions", improve.hyperparam.estimates=TRUE,
control.inla = list( strategy="laplace", int.strategy="eb" )
)
MO = M[ iw, ]
ii = match( todrop, MO$id )
jj = match( todrop, Mdropped$id )
observed = Mdropped[jj, "meansize"]
fitted = fit$summary.fitted.values[["mean"]] [ii]
plot( fitted ~ observed )
abline(0,1)
cor( fitted, observed, use="pairwise.complete.obs" )
cor( fitted, observed, use="pairwise.complete.obs", "spearman" )
# model pa using all data
fit = NULL; gc()
fit = carstm_model( p=pH, data=M, sppoly=sppoly,
posterior_simulations_to_retain="predictions", improve.hyperparam.estimates=TRUE,
# control.family=list(control.link=list(model="logit")), # default
control.inla = list( strategy="laplace", int.strategy="eb" )
)
MO = M
ii = match( todrop, MO$id )
jj = match( todrop, Mdropped$id )
observed = Mdropped[jj, "pa"]
fitted = fit$summary.fitted.values[["mean"]] [ii]
plot( fitted ~ jitter(observed) )
abline(0,1)
cor( fitted, observed, use="pairwise.complete.obs" )
cor( fitted, observed, use="pairwise.complete.obs", "spearman" )
### continue as in 03_biomass_index_carstm.R .. alter save locations
} # end spatiotemporal model
# ----------------------
# Part 3: assimilation of models
assimilate_numbers_and_size = TRUE
if (assimilate_numbers_and_size ) {
### continue as in 03_biomass_index_carstm.R .. alter save locations
} # end assimilate size and numbers
# end
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.