### AlphaPart_deterministic_MCMC.R
###-----------------------------------------------------------------------------
### $Id$
###-----------------------------------------------------------------------------
### DESCRIPTION OF A DEMONSTRATION
###-----------------------------------------------------------------------------
## A demonstration with a simple example to see in action the partitioning of
## additive genetic values by paths (Garcia-Cortes et al., 2008; Animal)
##
## DETERMINISTIC SIMULATION (sort of)
##
## We have two locations (1 and 2). The first location has individualss with higher
## additive genetic value. Males from the first location are imported males to the
## second location from generation 2/3. This clearly leads to genetic gain in the
## second location. However, the second location can also perform their own selection
## so the question is how much genetic gain is due to the import of genes from the
## first location and due to their own selection.
##
## Above scenario will be tested with a simple example of a pedigree bellow. Two
## scenarios will be evaluated: without or with own selection in the second location.
## Selection will always be present in the first location.
##
## Additive genetic values are provided, but also infered from the data using MCMC
## method to show how to use AlphaPart with MCMC results!
##
## The idea of this example is not to do extensive simulations, but just to have
## a simple example to see how the partitioning of additive genetic values works.
### SETUP
###-----------------------------------------------------------------------------
options(width=200)
### EXAMPLE PEDIGREE & SETUP OF MENDELIAN SAMPLING - "DETERMINISTIC"
###-----------------------------------------------------------------------------
## Generation 0
id0 <- c("01", "02", "03", "04")
fid0 <- mid0 <- rep(NA, times=length(id0))
h0 <- rep(c(1, 2), each=2)
g0 <- rep(0, times=length(id0))
w10 <- c( 2, 2, 0, 0)
w20 <- c( 2, 2, 0, 0)
## Generation 1
id1 <- c("11", "12", "13", "14")
fid1 <- c("01", "01", "03", "03")
mid1 <- c("02", "02", "04", "04")
h1 <- h0
g1 <- rep(1, times=length(id1))
w11 <- c( 0.6, 0.2, -0.6, 0.2)
w21 <- c( 0.6, 0.2, 0.6, 0.2)
## Generation 2
id2 <- c("21", "22", "23", "24")
fid2 <- c("12", "12", "12", "12")
mid2 <- c("11", "11", "13", "14")
h2 <- h0
g2 <- rep(2, times=length(id2))
w12 <- c( 0.6, 0.3, -0.2, 0.2)
w22 <- c( 0.6, 0.3, 0.2, 0.2)
## Generation 3
id3 <- c("31", "32", "33", "34")
fid3 <- c("22", "22", "22", "22")
mid3 <- c("21", "21", "23", "24")
h3 <- h0
g3 <- rep(3, times=length(id3))
w13 <- c( 0.7, 0.1, -0.3, 0.3)
w23 <- c( 0.7, 0.1, 0.3, 0.3)
## Generation 4
id4 <- c("41", "42", "43", "44")
fid4 <- c("32", "32", "32", "32")
mid4 <- c("31", "31", "33", "34")
h4 <- h0
g4 <- rep(4, times=length(id4))
w14 <- c( 0.8, 0.8, -0.1, 0.3)
w24 <- c( 0.8, 0.8, 0.1, 0.3)
## Generation 5
id5 <- c("51", "52", "53", "54")
fid5 <- c("42", "42", "42", "42")
mid5 <- c("41", "41", "43", "44")
h5 <- h0
g5 <- rep(5, times=length(id4))
w15 <- c( 0.8, 1.0, -0.2, 0.3)
w25 <- c( 0.8, 1.0, 0.2, 0.3)
ped <- data.frame( id=c( id0, id1, id2, id3, id4, id5),
fid=c(fid0, fid1, fid2, fid3, fid4, fid5),
mid=c(mid0, mid1, mid2, mid3, mid4, mid5),
loc=c( h0, h1, h2, h3, h4, h5),
gen=c( g0, g1, g2, g3, g4, g5),
w1=c( w10, w11, w12, w13, w14, w15),
w2=c( w20, w21, w22, w23, w24, w25))
ped$sex <- 2
ped[ped$id %in% ped$fid, "sex"] <- 1
ped$loc.gen <- with(ped, paste(loc, gen, sep="-"))
### SIMULATE ADDITIVE GENETIC VALUES - SUM PARENT AVERAGE AND MENDELIAN SAMPLING
###-----------------------------------------------------------------------------
## Additive genetic mean in founders by location
mu1 <- 2
mu2 <- 0
## Additive genetic variance in population
sigma2 <- 1
sigma <- sqrt(sigma2)
## Threshold value for Mendelian sampling for selection - only values above this
## will be accepted in simulation
t <- 0
ped$agv1 <- ped$pa1 <- NA ## Scenario (trait) 1: No selection in the second location
ped$agv2 <- ped$pa2 <- NA ## Scenario (trait) 2: Selection in the second location
## Generation 0 - founders (no parent average here - so setting it to zero)
ped[ped$gen == 0, c("pa1", "pa2")] <- 0
ped[ped$gen == 0, c("agv1", "agv2")] <- ped[ped$gen == 0, c("w1", "w2")]
## Generation 1+ - non-founders (parent average + Mendelian sampling)
for(i in (length(g0)+1):nrow(ped)) {
ped[i, "pa1"] <- 0.5 * (ped[ped$id %in% ped[i, "fid"], "agv1"] +
ped[ped$id %in% ped[i, "mid"], "agv1"])
ped[i, "pa2"] <- 0.5 * (ped[ped$id %in% ped[i, "fid"], "agv2"] +
ped[ped$id %in% ped[i, "mid"], "agv2"])
ped[i, c("agv1", "agv2")] <- ped[i, c("pa1", "pa2")] + ped[i, c("w1", "w2")]
}
## Recode identifications to 1:n
ped$ID <- 1:nrow(ped)
ped$FID <- match(ped$fid, ped$id)
ped$MID <- match(ped$mid, ped$id)
## pedigree object
ped2 <- with(ped, pedigree(sire=FID, dam=MID, label=ID))
### SIMULATE PHENOTYPES
###-----------------------------------------------------------------------------
mu <- 100
h2 <- 0.9 ## set high heritability as this is a small example with little info
sigma2 <- (sigma2 / h2) - sigma2
sigma <- sqrt(sigma2)
## Make repeated records to make pedigreemm() happy
dat <- rbind(ped, ped)
dat <- dat[order(dat$ID), ]
dat$y1 <- with(dat, round(rnorm(n=nrow(dat), mean=mu + agv1, sd=sigma), 1))
dat$y2 <- with(dat, round(rnorm(n=nrow(dat), mean=mu + agv2, sd=sigma), 1))
### PLOT INDIVIDUAL ADDITIVE GENETIC and PHENOTYPIC VALUES
###-----------------------------------------------------------------------------
par(mfrow=c(2, 2), bty="l", pty="m", mar=c(2, 2, 1, 1) + .1, mgp=c(0.7, 0.2, 0))
tmp <- ped$gen + seq(-1.5, 1.5, length=4) * 0.1
with(ped, plot(agv1 ~ tmp, pch=c(19, 21)[loc], ylab="Additive genetic value",
xlab="Generation", main="Selection in location 1", axes=FALSE,
ylim=range(c(agv1, agv2))))
axis(1, labels=FALSE, tick=FALSE); axis(2, labels=FALSE, tick=FALSE); box()
legend(x="topleft", legend=c(1, 2), title="Location", pch=c(19, 21), bty="n")
with(ped, plot(agv2 ~ tmp, pch=c(19, 21)[loc], ylab="Additive genetic value",
xlab="Generation", main="Selection in locations 1 and 2", axes=FALSE,
ylim=range(c(agv1, agv2))))
axis(1, labels=FALSE, tick=FALSE); axis(2, labels=FALSE, tick=FALSE); box()
legend(x="topleft", legend=c(1, 2), title="Location", pch=c(19, 21), bty="n")
tmp <- dat$gen + seq(-1.5, 1.5, length=8) * 0.1
with(dat, plot(y1 ~ tmp, pch=c(19, 21)[loc], ylab="Phenotypic value",
xlab="Generation", main="Selection in location 1", axes=FALSE,
ylim=range(c(y1, y2))))
axis(1, labels=FALSE, tick=FALSE); axis(2, labels=FALSE, tick=FALSE); box()
legend(x="topleft", legend=c(1, 2), title="Location", pch=c(19, 21), bty="n")
with(dat, plot(y2 ~ tmp, pch=c(19, 21)[loc], ylab="Phenotypic value",
xlab="Generation", main="Selection in locations 1 and 2", axes=FALSE,
ylim=range(c(y1, y2))))
axis(1, labels=FALSE, tick=FALSE); axis(2, labels=FALSE, tick=FALSE); box()
legend(x="topleft", legend=c(1, 2), title="Location", pch=c(19, 21), bty="n")
### INFER AGV VIA MCMC
###-----------------------------------------------------------------------------
## TODO: use MCMCglmm with fixed variances (make h2 high!)
fit1 <- pedigreemm(formula=y1 ~ (1 | ID), data=dat, pedigree=list(ID=ped2))
fit2 <- pedigreemm(formula=y2 ~ (1 | ID), data=dat, pedigree=list(ID=ped2))
par(mfrow=c(1, 2))
plot(ranef(fit1)$ID[, 1] ~ ped$agv1)
plot(ranef(fit2)$ID[, 1] ~ ped$agv2)
## TODO: is so bad correlation OK?
ranef(fit1, postVar=TRUE)
## Error in .local(object, ...) :
## code for applying pedigree and posterior variances not yet written
## TODO: check how postVar are obtained
## TODO: tell to Bates and Vasquez that this should not be needed as we need only diagonals
fit1MCMC <- mcmcsamp(fit1, n=1000, saveb=TRUE)
fit2MCMC <- mcmcsamp(fit2, n=1000, saveb=TRUE)
### PARTITION ADDITIVE GENETIC VALUES BY ...
###-----------------------------------------------------------------------------
## Compute partitions by location
(res <- AlphaPart(x=ped, colPath="loc", colBV=c("agv1", "agv2")))
## Summarize whole population
(ret <- summary(res))
## Summarize and plot by generation (=trend)
(ret <- summary(res, by="gen"))
plot(ret)
## Summarize and plot location specific trends
(ret <- summary(res, by="loc.gen"))
plot(ret)
## Summarize and plot location specific trends but only for location 1
(ret <- summary(res, by="loc.gen", subset=res[[1]]$loc == 1))
plot(ret)
## Summarize and plot location specific trends but only for location 2
(ret <- summary(res, by="loc.gen", subset=res[[1]]$loc == 2))
plot(ret)
## Compute partitions by location and sex
ped$loc.sex <- with(ped, paste(loc, sex, sep="-"))
(res <- AlphaPart(x=ped, colPath="loc.sex", colBV=c("agv1", "agv2")))
## Summarize and plot by generation (=trend)
(ret <- summary(res, by="gen"))
plot(ret)
plot(ret, lineTypeList=list("-1"=1, "-2"=2, def=3))
## Summarize and plot location specific trends
(ret <- summary(res, by="loc.gen"))
plot(ret, lineTypeList=list("-1"=1, "-2"=2, def=3))
## Summarize and plot location specific trends but only for location 1
(ret <- summary(res, by="loc.gen", subset=res[[1]]$loc == 1))
plot(ret)
## Summarize and plot location specific trends but only for location 2
(ret <- summary(res, by="loc.gen", subset=res[[1]]$loc == 2))
plot(ret)
###-----------------------------------------------------------------------------
### AlphaPart_deterministic_MCMC.R ends here
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.