#' Plot Daily New Cases by Specimen Collection Date
#'
#' @param data Case data, as output by
#' \code{\link[coviData:process-nbs]{pos(process_inv())}}
#'
#' @param date The report date of the data; defaults to the most recent date
#'
#' @param delay Number of days to ignore 7 day average (due to incomplete data);
#' default is calculated using
#' \code{\link[covidModel:estimate_delay]{estimate_delay()}}
#'
#' @return A `ggplot` object
#'
#' @export
case_plot_daily_ped_all <- function(
data = pos(process_inv(read_inv(date = date))),
date = NULL,
delay = NULL
) {
min_date <- lubridate::ymd("2020-03-08")#lubridate::as_date("2020-03-08")
# Date for current (and previous) counts
date <- date_inv(date)
if (is.null(delay)) {
rpt_data <- dplyr::as_tibble(coviData::load_report_date())
complete_date <- data %>%
dplyr::left_join(rpt_data, by = "inv_local_id") %>%
dplyr::mutate(
collection_date = lubridate::ymd(.data[["collection_date"]])#lubridate::as_date(.data[["collection_date"]])
) %>%
covidModel::estimate_delay(today = date) %>%
dplyr::pull("collection_date")
delay <- date - complete_date
}
#ped data
data$calc_age <- active_trans_age(data)
data_ped <- subset(data, data$calc_age < 18)
data2 = pos(process_inv(read_inv(date = date-1)))
data2$calc_age <- active_trans_age(data2)
data_ped2 <- subset(data2, data2$calc_age < 18)
# Label numbers
n_total <- NROW(data)
n_prev <- NROW(read_inv_id(date = date - 1L))
n_new <- n_total - n_prev
n_total_ped <- NROW(data_ped)
n_prev_ped <- NROW(data_ped2)
n_new_ped <- n_total_ped - n_prev_ped
gg_data_all <- prep_daily_data(
data,
min_date = min_date,
date = date,
delay = delay
)
gg_data_ped <- prep_daily_data_ped(
data,
min_date = min_date,
date = date,
delay = delay
)
gg_data_ped <- dplyr::rename(gg_data_ped, n_ped = n, avg_ped = avg)
gg_data <- dplyr::full_join(gg_data_all, gg_data_ped)
n_plotted <- sum(gg_data[["n"]], na.rm = TRUE)
n_missing <- n_total - n_plotted
gg_data %>%
ggplot2::ggplot(
ggplot2::aes(x = .data[["test_date"]], y = .data[["n"]])
) %>%
set_ts_theme() %>%
add_daily_scale() %>%
add_daily_curve_ped_all() %>%
add_covid_events(lab_y = 4000L, color = "grey60", size = 3) %>%
add_daily_label(total = n_total, new = n_new)%>%
#add_daily_label_ped_all(total = n_total, new = n_new, total_ped = n_total_ped, new_ped = n_new_ped) %>%
add_daily_axis_labels() %>%
add_daily_title_caption_ped_all(date = date, missing = n_missing)
}
#' Prepare Data for Plotting Daily New Peds Cases
#'
#' @param data Ped Case data, as output by
#' \code{\link[coviData:process-nbs]{pos(process_inv())}}
#'
#' @param min_date Minimum plotting date
#'
#' @param date Report date
#'
#' @param delay Number of days to ignore moving average (due to incomplete data)
#'
#' @return A `tibble` with columns `report_date`, `n`, and `avg`
#'
#' @noRd
#Data for child cases
prep_daily_data_ped <- function(data, min_date, date, delay) {
data$calc_age <- active_trans_age(data)
data_ped <- subset(data, data$calc_age < 18)
data_ped %>%
dplyr::transmute(
id = .data[["inv_local_id"]],
test_date = coviData::std_dates(
.data[["specimen_coll_dt"]],
orders = c("ymdT", "ymdHM", "ymd"),
train = FALSE,
force = "dt"
)
) %>%
dplyr::filter(
{{ min_date }} <= .data[["test_date"]],
.data[["test_date"]] <= {{ date }}
) %>%
dplyr::arrange(.data[["test_date"]], .data[["id"]]) %>%
dplyr::distinct(.data[["id"]], .keep_all = TRUE) %>%
dplyr::count(.data[["test_date"]]) %>%
dplyr::arrange(.data[["test_date"]]) %>%
tidyr::complete(
"test_date" = seq(min_date, date, by = 1L),
fill = list(n = 0L)
) %>%
timetk::tk_augment_slidify(
.data[["n"]],
.period = 7L,
.f = mean,
na.rm = TRUE,
.align = "right",
.names = "avg"
) %>%
dplyr::mutate(
avg = vec_assign(
.data[["avg"]],
i = (NROW(.) - delay + 1L):NROW(.),
value = NA_real_
)
)
}
#' Add Daily and Ped Case Curves to Plot
#'
#' Adds a \code{\link[ggplot2:geom_col]{geom_col()}} curve and a
#' \code{\link[ggplot2:geom_line]{geom_line()}} curve to the plot
#'
#' @param gg_obj A `ggplot` object
#'
#' @param The `ggplot` object with the added geom
#'
#' @noRd
add_daily_curve_ped_all <- function(gg_obj) {
gg_obj +
ggplot2::geom_col(
fill = "midnightblue",
width = 1,
show.legend = FALSE
) +
ggplot2::geom_line(
ggplot2::aes(y = .data[["avg"]]),
color = "darkorange",
size = 1.25,
show.legend = FALSE
) +
ggplot2::geom_line(
ggplot2::aes(y = .data[["avg_ped"]]),
color = "red",
size = 1.25,
show.legend = FALSE
)
}
#' Add Label to Daily and Ped Case Plot
#'
#' Adds a label in the upper-left with 'Total' and 'New' cases
#'
#' @param gg_obj A `ggplot` object
#'
#' @param total Total cases in data
#'
#' @param new New cases for report date
#'
#' @return The `ggplot` object with the added label
#'
#' @noRd
add_daily_label_ped_all <- function(gg_obj, total, new, total_ped, new_ped) {
x <- gg_var(gg_obj, "x")
y <- gg_var(gg_obj, "y")
min_date <- min(gg_obj[["data"]][[x]], na.rm = TRUE)
label <- paste0(
"Total Peds Cases = ", format(total_ped, big.mark = ","), "\n",
"New Reported Peds Cases = ", format(new_ped, big.mark = ",")
)
gg_obj +
ggplot2::annotate(
"label",
x = min_date,
y = 1000L,
label = label,
color = "red",
fill = "#f0f0f0",
hjust = 0,
vjust = 1,
fontface = "bold",
label.size = 1
)
}
#' Add Title, Subtitle, and Caption to Daily and Ped Case Plot
#'
#' Adds title `"New COVID-19 Cases by Specimen Collection Date"`, a subtitle
#' displaying the report date, and a caption stating number missing and data
#' source
#'
#' @param gg_obj A `ggplot` object
#'
#' @param date The report date to add as subtitle
#'
#' @param missing Number of observations missing from graphic
#'
#' @return The `ggplot` object with added title and subtitle
#'
#' @noRd
add_daily_title_caption_ped_all <- function(gg_obj, date, missing) {
caption <- paste0(
"Excludes cases with missing specimen collection dates ",
"(N = ", format(missing, big.mark = ","), ")\n",
"Data Source: National Electronic Disease Surveillance System (NEDSS)\n",
"Note: Pediatric Cases Denoted in Red"
)
add_title_caption(
gg_obj,
title = "New COVID-19 Cases by Specimen Collection Date",
subtitle = format(lubridate::as_date(date), "%B %d, %Y"),
caption = caption
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.