View source: R/boxplot.cell.clustering.R
boxplot.cell.clustering | R Documentation |
It draws a boxplot with cell clusters identified through FlowCT::fsom.clustering()
.
boxplot.cell.clustering(
fcs.SCE,
assay.i = "normalized",
cell.clusters,
condition = "condition",
return.mode = "percentage",
log.trans = FALSE,
color.by = condition,
facet = FALSE,
facet.free.scale = "free_x",
y.limits,
return.stats = FALSE,
plot.only.sig = c(F, 0.05),
cond.colors,
color.by.colors
)
fcs.SCE |
A |
assay.i |
Name of matrix stored in the |
cell.clusters |
Name of column containing clusters identified through |
condition |
Column name from the |
return.mode |
String for specifying if final resuls should be proportions ("percentage") or raw counts ("counts"). Default = |
log.trans |
Logarithmic transformation of counts/percentage values?. Default = |
color.by |
Variable name (from |
facet |
Logical indicating if splitting boxplots by cell clusters. Default = |
facet.free.scale |
If |
shape.by |
Variable name (from |
y.limits |
Numeric vector with limits for y-axis (minimum, maximum). |
return.stats |
Logical indicating if calculated statistics should be returned in a new variable. Default = |
plot.only.sig |
Vector indicating if only significant cell clusters should be displayed (logical element) and the P-value cutoff for selecting those ones (numerical element). Default = |
cond.colors |
Vector with colors for plotting option |
color.by.colors |
Vector with colors for plotting option |
## Not run:
# option 1: show all cell clusters and return statistics
bx_sig <- boxplot.cell.clustering(fcs.SCE = fcs, cell.clusters = "SOM_named", facet = T,
facet.free.scale = "free", return.stats = T)
# option 2: show only those significant cell clusters
boxplot.cell.clustering(fcs.SCE = fcs, cell.clusters = "SOM_named",
plot.only.sig = c(T, 0.1))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.