parallel.plot: Longitudinal differential dotplot

View source: R/parallel.plot.R

parallel.plotR Documentation

Longitudinal differential dotplot

Description

It draws a differential dot plot (longitudinaly) according condition for each cell cluster identified.

Usage

parallel.plot(
  fcs.SCE,
  assay.i = "normalized",
  cell.clusters,
  condition,
  psig.cutoff = 0.05,
  return.stats = FALSE,
  colors,
  return.mode = "percentage",
  hide.nosig = FALSE,
  log.trans = FALSE,
  size = 3,
  labels.pos,
)

Arguments

fcs.SCE

A fcs.SCE object generated through FlowCT::fcs.SCE().

assay.i

Name of matrix stored in the fcs.SCE object from which calculate correlation. Default = "normalized".

cell.clusters

Name of column containing clusters identified through FlowCT::clustering.flow().

condition

Column name from the colData(fcs.SCE) object which contains condition information. De

psig.cutoff

P-value cutoff. Default = 0.05.

return.stats

Logical indicating if calculated statistics should be returned in a new variable. Default = FALSE.

colors

Vector with colors for plotting.

return.mode

String for specifying if final resuls should be proportions ("percentage") or raw counts ("counts"). Default = "percentage".

hide.nosig

Logical indicating whether hiding non-significal cell populations. Default = FALSE.

log.trans

Logarithmic transformation of counts/percentage values?. Default = FALSE.

size

Point size. Default = 3.

labels.pos

Position for cell clusters labelling, user should indicate the numeric position (i.e., 1 for first condition, 2 for second, and so on). By default, last condition will be used.

Examples

## Not run: 
parallel.plot(fcs.SCE = fcs, cell.clusters = "SOM_named")

## End(Not run)

jgarces02/FlowCT documentation built on March 28, 2023, 12:42 p.m.