clustering.flow: Clustering FCS data

View source: R/clustering.flow.R

clustering.flowR Documentation

Clustering FCS data

Description

This function offers multiple automatic clustering methods for a FCS.SCE object. Those methods available are:

  1. SOM: Self-Organizing Map (SOM) based on FlowSOM package.

  2. Phenograph: An implementation of PhenoGraph algorithm (here for more information).

  3. Seurat: Clustering method based on Seurat's single-cell analysis.

  4. PARC: R implementation for Phenotyping by Accelerated Refined Community-partitioning (PARC) method, see Python module.

Usage

clustering.flow(
  fcs.SCE,
  assay.i = "normalized",
  method,
  scale = FALSE,
  markers.to.use = "all",
  num.k,
  seurat.res = 0.4,
  seurat.dims = 1:10
)

Arguments

fcs.SCE

A fcs.SCE object generated through FlowCT::fcs.SCE().

assay.i

Name of matrix stored in the fcs.SCE object from which calculate SOM clustering. Default = "normalized".

method

What method should be used for clustering purposes. Available ones are "SOM", "Phenograph", "Seurat" and "PARC".

scale

Should be data be scale before SOM clustering? (only available for this method). Default = "FALSE".

markers.to.use

Markers used for considering within the clustering calculation. Default = "all".

num.k

Number of clusters to calculate for methods "SOM" and "Phenograph".

seurat.res

Seurat's resolution to calculate clustering (it indicates the ‘granularity’ of the downstream clustering, with increased values leading to a greater number of clusters). Default = 0.4.

seurat.dims

Number of dimensions to calculated with Seurat's method. Default = 1:10.

Examples

## Not run: 
fcs <- clustering.flow(fcs, method = "som", num.k = 20)
fcs <- clustering.flow(fcs, method = "phenograph", num.k = 40)
fcs <- clustering.flow(fcs, method = "Seurat", seurat.res = 0.5)
fcs <- clustering.flow(fcs, method = "parc", assay.i = "transformed")

## End(Not run)

jgarces02/FlowCT documentation built on March 28, 2023, 12:42 p.m.