read_input_data2 <- function(data, metadata){
Y <- unlist(data$response$afib_episode_yn)
Treatment <- data$treatment
length_each <- sapply(data$response$afib_episode_yn, length)
Treat <- rep(Treatment, time = length_each)
# Treat[Treat == "control"] = "baseline"
# Treat[Treat == "trigger"] = "A"
# for (i in Treatment){
# if (sum(Treat == i) == sum(is.na(Y[Treat == i]))){
# Y <- Y[Treat != i]
# Treat <- Treat[Treat != i]
# }
# }
list(Treat = Treat, Y = Y)
}
# find_raw_mean2 <- function(Y, Treat, baseline, response){
#
# raw_mean <- c(mean(Y[Treat == baseline], na.rm = TRUE), mean(Y[Treat == "A"], na.rm = TRUE))
# raw_mean[is.nan(raw_mean)] <- NA
# raw_mean
# }
# check_enough_data2 <- function(Treatment, x){
# length(table(Treatment[!is.na(x)])) == 2
# }
summarize_nof1_afib <- function(nof1, result, treat.name){
with(c(nof1, result),{
samples <- do.call(rbind, samples)
# samples <- do.call(rbind, result$samples)
# Y <- nof1$Y
# Treat <- nof1$Treat
# response <- nof1$response
raw_mean <- find_raw_mean(Y, Treat, treat.name)
rounded_raw_mean <- round_number(raw_mean, response)
raw_mean <- list(control = rounded_raw_mean[1], trigger = rounded_raw_mean[2])
# An odds ratio of 1 indicates that the condition or event under study is equally likely to occur in both groups.
# An odds ratio greater than 1 indicates that the condition or event is more likely to occur in the first group.
# And an odds ratio less than 1 indicates that the condition or event is less likely to occur in the first group.
coef <- samples[, colnames(samples) %in% paste("beta_", treat.name, sep = "")]
for (i in treat.name){
col.treat.name <- paste("beta_", i, sep = "")
if (col.treat.name %in% colnames(coef)){
assign(paste("coef_", col.treat.name, sep = ""), coef[, col.treat.name, drop = F])
}
}
# hist(coef_beta_control)
# hist(coef_beta_trigger - coef_beta_control)
# base <- inv_logit(coef_alpha)
# trigger <- inv_logit(coef_alpha + coef_beta_A)
greater_than_1 <- round(mean(coef_beta_trigger > coef_beta_control) *100)
# greater_than_1 <- round(mean((trigger/base) > 1, na.rm = TRUE)*100)
greater_than_1 <- change(greater_than_1)
return(list(raw_mean = raw_mean, prob_afib_more_likely_with_trigger = greater_than_1))
})
}
#' For PCORI purposes
#'
#' @export
wrap2 <- function(data, metadata){
read_data <- tryCatch({
read_dummy <- read_input_data2(data, metadata)
read_dummy
}, error = function(error){
return(paste("input read error: ", error))
})
print(read_data)
treat.name <- c("control", "trigger")
afib <- tryCatch({
data_afib <- read_data
nof1_afib <- with(data_afib, {
# Y <- data_afib$Y
# Treat <- data_afib$Treat
nof1.data(Y, Treat, response = "binomial")
})
# nof1 <- nof1_afib
result_afib <- nof1.run(nof1_afib)
# result <- result_afib
summarize_nof1_afib(nof1_afib, result_afib, treat.name)
}, error = function(error){
return(paste("afib run error: ", error))
})
metadata <- list(
successful_input_reading = check_success(read_data),
successful_run_afib = check_success(afib),
enough_afib = check_enough_data(read_data$Treat,
read_data$Y,
treat.name),
user_id = metadata$user_id,
trigger = metadata$trigger,
design = metadata$design,
timestamp_sammy_completed = Sys.time(),
sammy_version_id = 1,
sammy_version_date = "8/15/2017",
sammy_version_note = "")
final <- list(metadata = metadata, afib = afib)
return(final)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.