R/nof1.wrap.R

Defines functions find_summary_graph wrap summarize_nof1_produce calculate_p_threshold find_mean_difference transform_using_link round_number find_raw_mean inv_logit link_function check_success check_enough_data change washout read_input_data

Documented in wrap

read_input_data <- function(data, metadata){

  if(metadata$user_age < 14){
    Outcome <- data$parent_response
  } else{
    if(length(unlist(data$parent_response)[!is.na(unlist(data$parent_response))]) >=
       length(unlist(data$child_response)[!is.na(unlist(data$child_response))])){
      Outcome <- data$parent_response
    }else{
      Outcome <- data$child_response
    }
  }

  Treatment <- data[,"treatment"]
  # Treatment[Treatment == "strict"] = "A"
  # Treatment[Treatment == "liberalized"] = "B"

  length_each <- sapply(Outcome[,"daily_stool_consistency"], length)
  Treat_stool_consistency <- rep(Treatment, times = length_each)
  change_point_stool_consistency <- cumsum(length_each)

  length_each <- sapply(Outcome[,"daily_stool_frequency"], length)
  Treat_stool_frequency <- rep(Treatment, times = length_each)
  change_point_stool_frequency <- cumsum(length_each)

  length_each <- sapply(Outcome[,"promis_pain_interference"]$`t-score`, length)
  Treat_pain_interference <- rep(Treatment, time = length_each)
  change_point_pain_interference <- cumsum(length_each)

  length_each <- sapply(Outcome[,"promis_gi_symptoms"]$`t-score`, length)
  Treat_gi_symptoms <- rep(Treatment, time = length_each)
  change_point_gi_symptoms <- cumsum(length_each)

  stool_consistency <- unlist(Outcome$daily_stool_consistency)
  # when stool consistency is regular, then 0; irregular 1
  stool_consistency <- ifelse(1 < stool_consistency & stool_consistency < 7, 0, 1)

  stool_frequency <- unlist(Outcome$daily_stool_frequency)
  pain_interference <- as.vector(unlist(Outcome$promis_pain_interference))
  gi_symptoms <- as.vector(unlist(Outcome$promis_gi_symptoms))

  list(stool_consistency              = stool_consistency,
       Treat_stool_consistency        = Treat_stool_consistency,
       change_point_stool_consistency = change_point_stool_consistency,
       stool_frequency                = stool_frequency,
       Treat_stool_frequency          = Treat_stool_frequency,
       change_point_stool_frequency   = change_point_stool_frequency,
       pain_interference              = pain_interference,
       Treat_pain_interference        = Treat_pain_interference,
       change_point_pain_interference = change_point_pain_interference,
       gi_symptoms                    = gi_symptoms,
       Treat_gi_symptoms              = Treat_gi_symptoms,
       change_point_gi_symptoms       = change_point_gi_symptoms)
}

washout <- function(read_data){

  # read_data <- read_dummy
  with(read_data,{

    # change_point <- cumsum(rle(Treatment)$lengths)
    # change_point <- cumsum(rle(read_data$Treatment)$lengths)
    # change_point <- change_point[-length(change_point)] # commented since we need the length of the whole study

    # Stool consistency
    delete_obs_daily <- NULL
    for(i in 1:(length(change_point_stool_consistency) - 1)){

      # delete observations if not enough measurements for washout
      if ((change_point_stool_consistency[i+1] - change_point_stool_consistency[i]) < 7) {
        delete_obs_daily <- c(delete_obs_daily, (change_point_stool_consistency[i]+1):(change_point_stool_consistency[i+1]))
      } else {
        delete_obs_daily <- c(delete_obs_daily, (change_point_stool_consistency[i]+1):(change_point_stool_consistency[i]+7))
      }

    }

    delete_obs_daily
    stool_consistency[delete_obs_daily] <- NA

    # Stool frequency
    delete_obs_daily <- NULL
    for(i in 1:(length(change_point_stool_frequency) - 1)){

      # delete observations if not enough measurements for washout
      if ((change_point_stool_frequency[i+1] - change_point_stool_frequency[i]) < 7) {
        delete_obs_daily <- c(delete_obs_daily, (change_point_stool_frequency[i]+1):(change_point_stool_frequency[i+1]))
      } else {
        delete_obs_daily <- c(delete_obs_daily, (change_point_stool_frequency[i]+1):(change_point_stool_frequency[i]+7))
      }

    }

    delete_obs_daily
    stool_frequency[delete_obs_daily] <- NA

    # change_point2 <- cumsum(rle(Treatment_weekly)$lengths)
    # change_point2 <- cumsum(rle(read_data$Treatment_weekly)$lengths)
    # change_point2 <- change_point2[-length(change_point2)]

    # Pain interference
    delete_obs_weekly <- NULL
    for(i in 1:(length(change_point_pain_interference) - 1)){

      if ((change_point_pain_interference[i+1] - change_point_pain_interference[i]) >= 1) {
        delete_obs_weekly <- c(delete_obs_weekly, change_point_pain_interference[i]+1)
      }

    }
    delete_obs_weekly
    pain_interference[delete_obs_weekly] <- NA

    # gi symptoms
    delete_obs_weekly <- NULL
    for(i in 1:(length(change_point_gi_symptoms) - 1)){

      if ((change_point_gi_symptoms[i+1] - change_point_gi_symptoms[i]) >= 1) {
        delete_obs_weekly <- c(delete_obs_weekly, change_point_gi_symptoms[i]+1)
      }

    }
    delete_obs_weekly
    gi_symptoms[delete_obs_weekly] <- NA

    # Delete observations if all observations are NA
    for (i in unique(Treat_stool_consistency)){
      if (sum(Treat_stool_consistency == i) ==
          sum(is.na(stool_consistency[Treat_stool_consistency == i]))){
        stool_consistency       <- stool_consistency[Treat_stool_consistency != i]
        Treat_stool_consistency <- Treat_stool_consistency[Treat_stool_consistency != i]
      }
    }

    for (i in unique(Treat_stool_frequency)){
      if (sum(Treat_stool_frequency == i) ==
          sum(is.na(stool_frequency[Treat_stool_frequency == i]))){
        stool_frequency       <- stool_frequency[Treat_stool_frequency != i]
        Treat_stool_frequency <- Treat_stool_frequency[Treat_stool_frequency != i]
      }
    }

    for (i in unique(Treat_pain_interference)){
      if (sum(Treat_pain_interference == i) ==
          sum(is.na(pain_interference[Treat_pain_interference == i]))){
        pain_interference       <- pain_interference[Treat_pain_interference != i]
        Treat_pain_interference <- Treat_pain_interference[Treat_pain_interference != i]
      }
    }

    for (i in unique(Treat_gi_symptoms)){
      if (sum(Treat_gi_symptoms == i) ==
          sum(is.na(gi_symptoms[Treat_gi_symptoms == i]))){
        gi_symptoms       <- gi_symptoms[Treat_gi_symptoms != i]
        Treat_gi_symptoms <- Treat_gi_symptoms[Treat_gi_symptoms != i]
      }
    }

    list(stool_consistency       = stool_consistency,
         Treat_stool_consistency = Treat_stool_consistency,
         stool_frequency         = stool_frequency,
         Treat_stool_frequency   = Treat_stool_frequency,
         pain_interference       = pain_interference,
         Treat_pain_interference = Treat_pain_interference,
         gi_symptoms             = gi_symptoms,
         Treat_gi_symptoms       = Treat_gi_symptoms)
  })
}


change <- function(x){
  x = ifelse(x==0,1,x)
  x = ifelse(x==100,99,x)
  return(x)
}

check_enough_data <- function(Treatment, x, treat.name){
  length(table(Treatment[!is.na(x)])) == length(treat.name)
}

check_success <- function(x){
  ifelse(is.list(x), TRUE, x)
}

link_function <- function(x, response){
  answer <-
    if(response == "poisson"){
      exp(x)
    } else if(response == "binomial"){
      inv_logit(x)
    } else if(response == "normal"){
      x
    }
}

inv_logit <- function(a){
  1/(1+exp(-a))
}

find_raw_mean <- function(Y, Treat, treat.name){

  raw_mean <- NULL
  for (i in treat.name){
    raw_mean <- c(raw_mean, mean(Y[Treat == i], na.rm = TRUE))
  }
  raw_mean[is.nan(raw_mean)] <- NA
  raw_mean

}

round_number <- function(raw_mean, response){

  if(response == "poisson" || response == "normal"){
    round(raw_mean,1)
  } else if(response == "binomial"){
    round(raw_mean*100)
  }
}

transform_using_link <- function(coef, response, treat.name){

  for (i in treat.name){
    col.treat.name <- paste("beta_", i, sep = "")
    if (col.treat.name %in% colnames(coef)){
      assign(paste("coef_", col.treat.name, sep = ""), coef[, col.treat.name, drop = F])
    }
  }

  if ("beta_baseline" %in% colnames(coef)){
    base <- link_function(coef_beta_baseline, response)
  } else {
    base <- NA
  }

  if ("beta_strict" %in% colnames(coef)){
    scd  <- link_function(coef_beta_strict, response)
  } else {
    scd  <- NA
  }

  if ("beta_liberalized" %in% colnames(coef)){
    mscd <- link_function(coef_beta_liberalized, response)
  } else {
    mscd <- NA
  }

  return(list(base = base, scd = scd, mscd = mscd))
}


find_mean_difference <- function(coef, response, raw_mean, treat.name){

  trans <- transform_using_link(coef, response, treat.name)

  mean_difference <- with(trans, {
    c(base_vs_scd = mean(scd - base), base_vs_mscd = mean(mscd - base), mscd_vs_scd = mean(scd - mscd))
  })

  rounded <- round_number(mean_difference, response)

  if(response == "binomial"){
    rounded[rounded==0 & !is.na(rounded)] <- 1
    rounded[rounded==100  & !is.na(rounded)] <- 99
  }
  return(rounded)
}

calculate_p_threshold <- function(coef, response, Y, Treat, treat.name){

  upper <-
    if(response == "poisson"){
      1.1
    # } else if(response == "binomial"){
    #   1.1
    } else if(response == "normal"){
      2.9
    }

  lower <-
    if(response == "poisson"){
      0.9
    # } else if(response == "binomial"){
    #   0.9
    } else if(response == "normal"){
      -2.9
    }

  trans <- transform_using_link(coef, response, treat.name)

  if (response == "binomial"){

    # se.lnrr.base.scd  <- sd(log(trans$scd/trans$base))
    # se.lnrr.base.mscd <- sd(log(trans$mscd/trans$base))
    # se.lnrr.scd.mscd  <- sd(log(trans$scd/trans$mscd))

    p.avg <- mean(c(median(trans$base), median(trans$scd)))
    se.lnrr.base.scd <- sqrt((1-p.avg) / p.avg / sum(!is.na(Y[Treat == "baseline"])) +
                               (1-p.avg) / p.avg / sum(!is.na(Y[Treat == "strict"])))

    # p.avg <- (sum(Y[(Treat == "baseline") & (!is.na(Y))] == 1) / sum(!is.na(Y[Treat == "baseline"])) +
    #             sum(Y[(Treat == "B") & (!is.na(Y))] == 1) / sum(!is.na(Y[Treat == "B"]))) / 2
    p.avg <- mean(c(median(trans$base), median(trans$mscd)))
    se.lnrr.base.mscd <- sqrt((1-p.avg) / p.avg / sum(!is.na(Y[Treat == "baseline"])) +
                               (1-p.avg) / p.avg / sum(!is.na(Y[Treat == "liberalized"])))

    # p.avg <- (sum(Y[(Treat == "strict") & (!is.na(Y))] == 1) / sum(!is.na(Y[Treat == "strict"])) +
    #             sum(Y[(Treat == "liberalized") & (!is.na(Y))] == 1) / sum(!is.na(Y[Treat == "liberalized"]))) / 2
    p.avg <- mean(c(median(trans$scd), median(trans$mscd)))
    se.lnrr.scd.mscd <- sqrt((1-p.avg) / p.avg / sum(!is.na(Y[Treat == "strict"])) +
                               (1-p.avg) / p.avg / sum(!is.na(Y[Treat == "liberalized"])))

    upper.scd.base <- exp(se.lnrr.base.scd)
    lower.scd.base <- exp(-se.lnrr.base.scd)

    upper.mscd.base <- exp(se.lnrr.base.mscd)
    lower.mscd.base <- exp(-se.lnrr.base.mscd)

    upper.scd.mscd <- exp(se.lnrr.scd.mscd)
    lower.scd.mscd <- exp(-se.lnrr.scd.mscd)
  }

  with(trans, {

  if(("beta_strict" %in% colnames(coef)) & ("beta_baseline" %in% colnames(coef))){
    if(response == "normal"){
      base_vs_scd <- list(greater_than_threshold = round(mean(scd - base > upper, na.rm = TRUE)*100),
                          lower_than_threshold = round(mean(scd - base < lower, na.rm = TRUE)*100))
    } else if(response == "poisson"){
      base_vs_scd <- list(greater_than_threshold = round(mean(scd/base > upper, na.rm = TRUE)*100),
                          lower_than_threshold = round(mean(scd/base < lower, na.rm = TRUE)*100))
    } else { # "binomial"
      # scd <- trans$scd
      # base <- trans$base
      base_vs_scd <- list(greater_than_threshold = round(mean(scd/base > upper.scd.base, na.rm = TRUE)*100),
                          lower_than_threshold = round(mean(scd/base < lower.scd.base, na.rm = TRUE)*100))
    }
    base_vs_scd <- rapply(base_vs_scd, change, how = "replace")
  } else{
    base_vs_scd <- list(greater_than_threshold = NA, lower_than_threshold = NA)
  }

  if(("beta_liberalized" %in% colnames(coef)) & ("beta_baseline" %in% colnames(coef))){
    if(response == "normal"){
      base_vs_mscd <- list(greater_than_threshold = round(mean(mscd - base > upper, na.rm = TRUE)*100),
                           lower_than_threshold = round(mean(mscd - base < lower, na.rm = TRUE)*100))
    } else if(response == "poisson"){
      base_vs_mscd <- list(greater_than_threshold = round(mean(mscd/base > upper, na.rm = TRUE)*100),
                          lower_than_threshold = round(mean(mscd/base < lower, na.rm = TRUE)*100))
    } else{ # "binomial"
      # mscd <- trans$mscd
      base_vs_mscd <- list(greater_than_threshold = round(mean(mscd/base > upper.mscd.base, na.rm = TRUE)*100),
                           lower_than_threshold = round(mean(mscd/base < lower.mscd.base, na.rm = TRUE)*100))
    }
    base_vs_mscd <- rapply(base_vs_mscd, change, how = "replace")
  } else{
    base_vs_mscd <- list(greater_than_threshold = NA, lower_than_threshold = NA)
  }

  if(("beta_strict" %in% colnames(coef)) & ("beta_liberalized" %in% colnames(coef))){

    if(response == "normal"){
      mscd_vs_scd <- list(greater_than_threshold = round(mean(scd - mscd > upper, na.rm = TRUE)*100),
                           lower_than_threshold = round(mean(scd - mscd < lower, na.rm = TRUE)*100))
    } else if(response == "poisson"){
      mscd_vs_scd <- list(greater_than_threshold = round(mean(scd/mscd > upper, na.rm = TRUE)*100),
                          lower_than_threshold = round(mean(scd/mscd < lower, na.rm = TRUE)*100))
    } else { # "binomial"
      mscd_vs_scd <- list(greater_than_threshold = round(mean(scd/mscd > upper.scd.mscd, na.rm = TRUE)*100),
                          lower_than_threshold = round(mean(scd/mscd < lower.scd.mscd, na.rm = TRUE)*100))
    }
    mscd_vs_scd <- rapply(mscd_vs_scd, change, how = "replace")
  } else{
    mscd_vs_scd <- list(greater_than_threshold = NA, lower_than_threshold = NA)
  }

  return(list(base_vs_scd = base_vs_scd, base_vs_mscd = base_vs_mscd, mscd_vs_scd = mscd_vs_scd))
  })
}

summarize_nof1_produce <- function(nof1, result, treat.name){

  with(c(nof1, result),{

    samples <- do.call(rbind, samples)
    # samples <- do.call(rbind, result$samples)
    # Y        <- nof1$Y
    # Treat    <- nof1$Treat
    # response <- nof1$response
    raw_mean <- find_raw_mean(Y, Treat, treat.name)

    rounded_raw_mean <- round_number(raw_mean, response)

    # coef <- samples[,colnames(samples) %in% c("alpha", "beta_A", "beta_B")]
    coef <- samples[,colnames(samples) %in% paste("beta_", treat.name, sep = "")]

    diff <- find_mean_difference(coef, response, raw_mean, treat.name)
    # diff <- find_mean_difference(coef, nof1$response, raw_mean)

    raw_mean <- list(base = rounded_raw_mean[1], scd = rounded_raw_mean[2], mscd = rounded_raw_mean[3])
    mean_difference <- list(base_vs_scd = diff[1], base_vs_mscd = diff[2], mscd_vs_scd = diff[3])
    three_group_comparison <- list(raw_mean = raw_mean, mean_difference = mean_difference)

    gauge_graph <- calculate_p_threshold(coef, response, Y, Treat, treat.name)
    return(list(three_group_comparison = three_group_comparison, gauge_graph = gauge_graph))
  })
}

#' For PCORI purposes
#'
#' @export

wrap <- function(data, metadata){

  read_data <- tryCatch({
    read_dummy <- read_input_data(data, metadata)
    if(length(rle(read_dummy$Treat_pain_interference)$lengths) > 1) read_dummy <- washout(read_dummy)
    read_dummy
  }, error = function(error){
    return(paste("input read error: ", error))
  })

  print(read_data)
  treat.name <- c("baseline", "strict", "liberalized")

  stool_frequency <- tryCatch({
    data_freq <- list(Treat = read_data$Treat_stool_frequency, Y = read_data$stool_frequency)
    # data_freq$Treat <- data_freq$Treat[!is.na(data_freq$Y)]
    # data_freq$Y     <- data_freq$Y[!is.na(data_freq$Y)]
    nof1_freq <- with(data_freq, {
      # Y     <- data_freq$Y
      # Treat <- data_freq$Treat
      nof1.data(Y, Treat, response = "poisson")
    })
    # nof1 <- nof1_freq
    result_freq <- nof1.run(nof1_freq)
    # nof1 <- nof1_freq
    # result <- result_freq
    summarize_nof1_produce(nof1_freq, result_freq, treat.name)
  }, error = function(error){
    return(paste("stool_frequency run error: ", error))
  })

  stool_consistency <- tryCatch({
    data_cons <- list(Treat = read_data$Treat_stool_consistency, Y = read_data$stool_consistency)
    nof1_cons <- with(data_cons, {
      # Y     <- data_cons$Y
      # Treat <- data_cons$Treat
      nof1.data(Y, Treat, response = "binomial")
    })
    result_cons <- nof1.run(nof1_cons)
    # nof1 <- nof1_cons
    # result <- result_cons
    summarize_nof1_produce(nof1_cons, result_cons, treat.name)
  }, error = function(error){
    return(paste("stool_consistency run error: ", error))
  })

  pain_interference <- tryCatch({
    data_pain <- list(Treat = read_data$Treat_pain_interference, Y = read_data$pain_interference)
    nof1_pain <- with(data_pain, {
      # Y <- data_pain$Y
      # Treat <- data_pain$Treat
      nof1.data(Y, Treat, response = "normal")
    })
    # nof1 <- nof1_pain
    result_pain <- nof1.run(nof1_pain)
    # nof1 <- nof1_pain
    # result <- result_pain
    summarize_nof1_produce(nof1_pain, result_pain, treat.name)
  }, error = function(error){
    return(paste("pain_interference run error: ", error))
  })

  gi_symptoms <- tryCatch({
    data_gi <- list(Treat = read_data$Treat_gi_symptoms, Y = read_data$gi_symptoms)
    nof1_gi <- with(data_gi, {
      # Y <- data_gi$Y
      # Treat <- data_gi$Treat
      nof1.data(Y, Treat, response = "normal")
    })
    # nof1 <- nof1_gi
    result_gi <- nof1.run(nof1_gi)
    # nof1 <- nof1_gi
    # result <- result_gi
    summarize_nof1_produce(nof1_gi, result_gi, treat.name)
  }, error = function(error){
    return(paste("gi_symptoms run error: ", error))
  })

  metadata <- list(successful_input_reading = check_success(read_data),
                   successful_run_stool_frequency = check_success(stool_frequency),
                   successful_run_stool_consistency = check_success(stool_consistency),
                   successful_run_pain_interference = check_success(pain_interference),
                   successful_run_gi_symptoms = check_success(gi_symptoms),
                   enough_stool_consistency = check_enough_data(read_data$Treat_stool_consistency,
                                                                read_data$stool_consistency,
                                                                treat.name),
                   enough_stool_frequency = check_enough_data(read_data$Treat_stool_frequency,
                                                              read_data$stool_frequency,
                                                              treat.name),
                   enough_pain_interference = check_enough_data(read_data$Treat_pain_interference,
                                                                read_data$pain_interference,
                                                                treat.name),
                   enough_gi_symptoms = check_enough_data(read_data$Treat_gi_symptoms,
                                                          read_data$gi_symptoms,
                                                          treat.name),
                   user_id = metadata$user_id,
                   timestamp_trialist_completed = Sys.time(),
                   trialist_version_id = 2,
                   trialist_version_date = "12/04/2017",
                   trialist_version_note = "")

  summary_graph <- tryCatch({
    base_vs_scd <- find_summary_graph(metadata, "base_vs_scd", stool_frequency, stool_consistency, pain_interference, gi_symptoms)
    base_vs_mscd <- find_summary_graph(metadata, "base_vs_mscd", stool_frequency, stool_consistency, pain_interference, gi_symptoms)
    mscd_vs_scd <- find_summary_graph(metadata, "mscd_vs_scd", stool_frequency, stool_consistency, pain_interference, gi_symptoms)
    list(base_vs_scd = base_vs_scd, base_vs_mscd = base_vs_mscd, mscd_vs_scd = mscd_vs_scd)
  }, error = function(error){
    return(paste("error in summary step:", error))
  })

  metadata2 <- list(successful_summary_graph = check_success(summary_graph))
  metadata <- c(metadata2, metadata)

  final <- list(metadata = metadata, stool_frequency = stool_frequency, stool_consistency = stool_consistency,
                pain_interference = pain_interference, gi_symptoms = gi_symptoms, summary_graph = summary_graph)

  return(final)
}

find_summary_graph <- function(metadata, treatment_comparison, stool_frequency, stool_consistency, pain_interference, gi_symptoms){

  summary <- list()

  if(metadata$successful_run_stool_frequency){
    a <- stool_frequency[["gauge_graph"]][[treatment_comparison]][["greater_than_threshold"]]
    b <- stool_frequency[["gauge_graph"]][[treatment_comparison]][["lower_than_threshold"]]
    summary$stool_frequency <- round(ifelse(a >= b, -a, b))
  }

  if(metadata$successful_run_stool_consistency){
    c <- stool_consistency[["gauge_graph"]][[treatment_comparison]][["greater_than_threshold"]]
    d <- stool_consistency[["gauge_graph"]][[treatment_comparison]][["lower_than_threshold"]]
    summary$stool_consistency <- round(ifelse(c >= d, -c, d))
  }

  if(metadata$successful_run_pain_interference){
    e <- pain_interference[["gauge_graph"]][[treatment_comparison]][["greater_than_threshold"]]
    f <- pain_interference[["gauge_graph"]][[treatment_comparison]][["lower_than_threshold"]]
    summary$pain_interference <- round(ifelse(e >= f, -e, f))
  }

  if(metadata$successful_run_gi_symptoms){
    g <- gi_symptoms[["gauge_graph"]][[treatment_comparison]][["greater_than_threshold"]]
    h <- gi_symptoms[["gauge_graph"]][[treatment_comparison]][["lower_than_threshold"]]
    summary$gi_symptoms <- round(ifelse(g >= h, -g, h))
  }
  return(summary)
}
jiabei-yang/nof1ins documentation built on Sept. 7, 2021, 1:10 p.m.