## ----style-knitr, eval=TRUE, echo=FALSE, results="asis"---------------------------------
BiocStyle::latex()
## ---------------------------------------------------------------------------------------
library(GenomicVis)
## ---------------------------------------------------------------------------------------
# We need to import VariantAnnotation to get access to rowData
suppressMessages(library(VariantAnnotation))
vcf.file <- system.file('extdata', 'example.vcf', package = 'GenomicVis')
vcf <- read.vcf(vcf.file, 'GRCh37')
x <- rowData(vcf)
plotKataegis(x)
## ----eval=FALSE-------------------------------------------------------------------------
# vcf.files <- list.vcffiles()
# for (vcf.file in vcf.files) {
# vcf <- read.vcf(vcf.file, 'GRCh37')
# x <- rowData(vcf)
# kat <- kataegis(x)
# name <- tools::file_path_sans_ext(vcf.file)
# png(file = paste0(name, '.png'))
# plotKataegis(x, main = name)
# dev.off()
# }
## ----eval=FALSE-------------------------------------------------------------------------
# kat <- kataegis(x, pcf = TRUE, ncpus = 4)
## ----eval=FALSE-------------------------------------------------------------------------
# kat <- kataegis(x, ncpus = 4)
## ---------------------------------------------------------------------------------------
file.names <- sprintf('LC%s_TUMOUR_%s.vcf', rep(1:3, each = 2),
rep(c('A', 'B'), each = 3))
vcf.files <- system.file('extdata', file.names, package = 'GenomicVis')
sample.names <- tools::file_path_sans_ext(basename(vcf.files))
snv.clustering(vcf.files, sample.names, genome = 'hg19')
## ---------------------------------------------------------------------------------------
file.names <- c('LC1_A.snpeff.vcf', 'LC1_B.snpeff.vcf',
'LC1_C.snpeff.vcf', 'LC1_D.snpeff.vcf')
vcf.files <- system.file('extdata', file.names, package = 'GenomicVis')
sample.names <- c('LC1_A', 'LC1_B', 'LC1_C', 'LC1_D')
dat <- read.snpeff.vcfs(vcf.files, 'GRCh37', sample.names)
snv.heatmap(dat, margins = c(5, 9), y.cex.axis = 0.7)
## ----eval=FALSE-------------------------------------------------------------------------
# library(Vennerable)
# file.names <- c('LC1_TUMOUR_A.vcf', 'LC1_TUMOUR_B.vcf')
# vcf.files <- system.file('extdata', file.names, package = 'GenomicVis')
# sample.names <- c('LC1_A', 'LC1_B')
# v <- vcf.venn(vcf.files, 'GRCh37', sample.names)
# plot(v$venn)
## ----eval=TRUE, fig.keep='last'---------------------------------------------------------
data(SNPExample)
data(CNVExample)
data(SVExample)
cnv.plot('18', SNPExample, CNVExample, SVExample)
## ----eval=FALSE-------------------------------------------------------------------------
# library(TxDb.Hsapiens.UCSC.hg19.knownGene)
# library(org.Hs.eg.db)
# genes.gr <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)
# gene_ids <- unlist(genes.gr$gene_id)
# symbol.map <- select(org.Hs.eg.db, gene_ids, 'SYMBOL')
# genes.gr$symbol <- symbol.map$SYMBOL
## ---------------------------------------------------------------------------------------
data(hg19Genes)
data(CNVData)
set.seed(100)
g <- sample(hg19Genes$symbol, 20)
cnv.heatmap(CNVData, symbols = g, genes.gr = hg19Genes)
## ----eval=FALSE-------------------------------------------------------------------------
# cnv.heatmap(CNVData, samples = c('LC3_A', 'LC3_B'), genes.gr = hg19Genes)
## ----eval=FALSE-------------------------------------------------------------------------
# library(org.Hs.eg.db)
# library(GenomicRanges)
# library(plyr)
#
# x <- read.delim(
# 'hg19_refGene.bed.gz',
# header = FALSE,
# stringsAsFactors = FALSE
# )
# x <- x[x$V1 %in% paste0("chr", c(1:22, 'X', 'Y')), ]
# keys <- x$V4
# dict <- select(org.Hs.eg.db, keys, 'SYMBOL', keytype = 'REFSEQ')
# symbol.df <- ddply(dict, .(REFSEQ), summarise,
# symbol = paste(unique(SYMBOL), collapse = ';'))
# rownames(symbol.df) <- symbol.df$REFSEQ
# x$symbol <- symbol.df[x$V4, ]$symbol
# hg19Genes <- GRanges(
# seqnames = Rle(x$V1),
# ranges = IRanges(start = x$V2, end = x$V3),
# strand = Rle(x$V6),
# refseq = x$V4,
# symbol = x$symbol
# )
## ----eval=FALSE-------------------------------------------------------------------------
# CNVExample <- read.gap(
# system.file('extdata', 'CN_BA_Illumina_MySeries.chr18.txt',
# package = 'GenomicVis'),
# system.file('extdata', 'Illum660K_annot_cut.chr18.csv',
# package = 'GenomicVis'),
# 'LC3_TUMOUR_C_FinalReport'
# )
## ----eval=FALSE-------------------------------------------------------------------------
# filename <- system.file('extdata', 'LC3_TUMOUR_C_FinalReport.chr18.txt',
# package = 'GenomicVis')
# SNPExample <- read.illumina(filename)
## ----eval=FALSE-------------------------------------------------------------------------
# SVExample <- read.breakdancer(
# system.file('extdata', 'LC3_BLOOD_TUMOUR_C.chr18.txt',
# package = 'GenomicVis'),
# normal.regex = 'BLOOD'
# )
# SVExample <- filter.breakdancer(SVExample)
## ----eval=FALSE-------------------------------------------------------------------------
# gap <- read.gap()
# CNVData <- gap2cnv(gap)
# CNVData <- CNVData[, c('Chr', 'Begin', 'End', 'LC3_TUMOUR_A_FinalReport',
# 'LC3_TUMOUR_B_FinalReport', 'LC3_TUMOUR_C_FinalReport')]
# colnames(CNVData) <- sub('_TUMOUR', '', colnames(CNVData))
# colnames(CNVData) <- sub('_FinalReport', '', colnames(CNVData))
## ----echo=FALSE-------------------------------------------------------------------------
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.