ms.us.pw: This function computes the market share of product profiles

Description Usage Arguments Value Examples

View source: R/ms.prediction.pw.R

Description

This function computes the market share of product profiles according to the utility share rule. Uses a data frame with part woths to predict utilities market profiles, mp, is a matrix of market product profiles (rows) by attributes (columns); pw is a data frame of clients (rows) by attribut levels part worths (colums); design.l is a list with the definition of the conjoint design.

Usage

1
ms.us.pw(mp, pw, design.l)

Arguments

mp

a matrix with the description of competitors' product profiles

pw

a data frame with all clients' part worths

design.l

a a list with conjoint design

Value

ms

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
data(MDSConjointData)
names(MDSConjointData)
osc<-MDSConjointData$osc
osc.conjoint <- conjoint.estimation(osc$ratings, osc$bundles, osc$design)
names(osc.conjoint)
# [1] "summary"     "fit"         "part.worths"  "prediction"
#head(osc.conjoint$summary)
head(osc.conjoint$fit)
head(osc.conjoint$part.worths)
head(osc.conjoint$prediction)
ms.us.pw(osc$market.profiles, osc.conjoint$part.worths, osc$design)
class(ms.us.pw(osc$market.profiles, osc$ratings, osc$bundles))

jlopezsi/MDSConjoint documentation built on May 17, 2017, 11:25 p.m.