Description Usage Arguments Details Value Author(s) References See Also Examples
Calculates Horvitz-Thompson estimate with different methods for variance estimation such as Yates and Grundy, Hansen-Hurwitz and Hajek.
1 | htestimate(y, N, PI, pk, pik, method = 'yg')
|
y |
vector of observations |
N |
integer for population size |
PI |
square matrix of second order inclusion probabilities with |
pk |
vector of first order inclusion probabilities of length |
pik |
an optional vector of first order inclusion probabilities of length |
method |
method to be used for variance estimation. Options are |
For using methods 'yg' or 'ht' has to be provided matrix PI, and for 'hh' and 'ha' has to be specified vector pk of inclusion probabilities.
Additionally, for Hajek method 'ha' can be specified pik. Unless, an approximate Hajek method is used.
The function htestimate returns a value, which is a list consisting of the components
call |
is a list of call components: |
mean |
mean estimate |
se |
standard error of the mean estimate |
Juliane Manitz
Kauermann, Goeran/Kuechenhoff, Helmut (2010): Stichproben. Methoden und praktische Umsetzung mit R. Springer.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | data(influenza)
summary(influenza)
# pps.sampling()
set.seed(108506)
pps <- pps.sampling(z=influenza$population,n=20,method='midzuno')
sample <- influenza[pps$sample,]
# htestimate()
N <- nrow(influenza)
# exact variance estimate
PI <- pps$PI
htestimate(sample$cases, N=N, PI=PI, method='yg')
htestimate(sample$cases, N=N, PI=PI, method='ht')
# approximate variance estimate
pk <- pps$pik[pps$sample]
htestimate(sample$cases, N=N, pk=pk, method='hh')
pik <- pps$pik
htestimate(sample$cases, N=N, pk=pk, pik=pik, method='ha')
# without pik just approximate calculation of Hajek method
htestimate(sample$cases, N=N, pk=pk, method='ha')
# calculate confidence interval based on normal distribution for number of cases
est.ht <- htestimate(sample$cases, N=N, PI=PI, method='ht')
est.ht$mean*N
lower <- est.ht$mean*N - qnorm(0.975)*N*est.ht$se
upper <- est.ht$mean*N + qnorm(0.975)*N*est.ht$se
c(lower,upper)
# true number of influenza cases
sum(influenza$cases)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.