setwd("/home/jason/R/runoutGPP/")
library(devtools)
build()
install()
# Load Packages and Data ####################################################################
library(runout.opt)
library(raster)
library(rgdal)
library(Rsagacmd)
# Initiate a SAGA-GIS geoprocessing object
saga <- saga_gis(opt_lib = "sim_geomorphology")
# Data
setwd("/home/jason/Data/Chile/")
dem <- raster("elev_alos_12_5m.tif")
# Runout source points
source_points <- readOGR(".", "debris_flow_source_points")
# Runout track polygons
runout_polygons <- readOGR(".", "debris_flow_polys_sample")
# Assign an object ID to each row of the SpatialPolygonsDataFrame
runout_polygons$objectid <- 1:100
# Example of GPP random walk simulation using R ################################
rwPerformance(dem, slide_plys = runout_polygons, slide_src = source_points,
slide_id = 77, slp = 30, ex = 3, per = 2,
gpp_iter = 1000, buffer_ext = 500, buffer_source = 50,
plot_eval = TRUE)
# Define grid search values
steps <- 3
rwexp_vec <- seq(1.3, 3, len=steps)
rwper_vec <- seq(1.5, 2, len=steps)
rwslp_vec <- seq(20, 40, len=steps)
rw_gridsearch <- rwGridsearch(dem, slide_plys = runout_polygons, slide_src = source_points,
slide_id = 77,
#Input random walk grid search space
slp_v = rwslp_vec, ex_v = rwexp_vec, per_v = rwper_vec,
#Set number of simulation iterations
gpp_iter = 1000,
#Define processing extent size (m)
buffer_ext = 500,
#(Optional) Define size of buffer to make source area from point
buffer_source = 50)
rw_gridsearch
rw_opt_single <- rwGetOpt_single(rw_gridsearch)
rw_opt_single
# Run RW optimization for multiple runout tracks ##############################
## DO NOT RUN
polyid_vec <- 1:100
# Use parallel processing for faster computations
library(foreach)
cl <- parallel::makeCluster(4)
doParallel::registerDoParallel(cl)
rw_grisearch_multi <-
foreach(poly_id=polyid_vec, .packages=c('rgdal','raster', 'rgeos', 'ROCR', 'Rsagacmd', 'sf', 'runout.opt')) %dopar% {
.GlobalEnv$saga <- saga
rwGridsearch(dem, slide_plys = runout_polygons, slide_src = source_points,
slide_id = poly_id, slp_v = rwslp_vec, ex_v = rwexp_vec, per_v = rwper_vec,
gpp_iter = 1000, buffer_ext = 500, buffer_source = 50, save_res = FALSE,
plot_eval = FALSE)
}
parallel::stopCluster(cl)
# Get optimal random walk parameter set ########################################
## HIDE
setwd("/home/jason/Scratch/GPP_RW_Paper")
(load("rw_gridsearch_multi.Rd"))
##
# from object
rwGetOpt(rw_gridsearch_multi, measure = median)
# Validate transferability using spatial cross validation ######################
rw_spcv <- rwSPCV(x = rw_gridsearch_multi, slide_plys = runout_polygons,
n_folds = 5, repetitions = 10)
freq_rw <- rwPoolSPCV(rw_spcv, plot_freq = TRUE)
# Example of GPP PCM simulation #######################
pcm <- pcmPerformance(dem, slide_plys = runout_polygons, slide_src = source_points,
slide_id = 77, rw_slp = 40, rw_ex = 3, rw_per = 1.5,
pcm_mu = 0.15, pcm_md = 120,
gpp_iter = 1000, buffer_ext = 500, buffer_source = 50,
plot_eval = TRUE, return_features = TRUE)
# Runout distance relative error
pcm$length.relerr
# Plot GPP PCM runout modelling ouputs
gpp_output <- stack(pcm$gpp.parea, pcm$gpp.stop, pcm$gpp.maxvel)
names(gpp_output) <- c("Process_area", "Stop_positions", "Max_velocity")
plot(gpp_output)
# Grid search for optimal PCM parameter set ###############
pcmmd_vec <- seq(20, 120, by=20)
pcmmu_vec <- seq(0.05, 0.3, by=0.1)
pcm_gridsearch <- pcmGridsearch(dem,
slide_plys = runout_polygons, slide_src = source_points, slide_id = 77,
#Plug-in random walk optimal parameters
rw_slp = rw_opt_single$rw_slp_opt,
rw_ex = rw_opt_single$rw_exp_opt,
rw_per = rw_opt_single$rw_per_opt,
#Input PCM grid search space
pcm_mu_v = pcmmu_vec,
pcm_md_v = pcmmd_vec,
#Set number of simulation iterations
gpp_iter = 1000,
#Define processing extent size (m)
buffer_ext = 500,
#(Optional) Define size of buffer to make source area from point
buffer_source = 50)
pcmGetOpt_single(pcm_gridsearch)
# Apply grid search to multiple events #########
polyid_vec <- 1:4
library(foreach)
cl <- parallel::makeCluster(4)
doParallel::registerDoParallel(cl)
pcm_gridsearch_multi <-
foreach(poly_id=polyid_vec, .packages=c('rgdal','raster', 'rgeos', 'ROCR', 'Rsagacmd', 'sf', 'runout.opt')) %dopar% {
.GlobalEnv$saga <- saga
pcmGridsearch(dem,
slide_plys = runout_polygons, slide_src = source_points, slide_id = poly_id,
rw_slp = rw_opt$rw_slp_opt, rw_ex = rw_opt$rw_exp_opt, rw_per = rw_opt$rw_per_opt,
pcm_mu_v = pcmmu_vec, pcm_md_v = pcmmd_vec,
gpp_iter = 1000,
buffer_ext = 500, buffer_source = NULL,
predict_threshold = 0.5,
plot_eval = FALSE)
}
parallel::stopCluster(cl)
# GET PCM OPTIMAL PARAMETERS #######################################
pcmGetOpt(pcm_gridsearch_multi, performance = "relerr", measure = "median", plot_opt = TRUE)
library(ggplot2)
library(metR)
library(reshape2)
pcm_grid <- pcmGetGrid(pcm_gridsearch_multi, performance = "auroc", measure = "IQR")
pcm_grid_df <- melt(pcm_grid)
ggplot(data = pcm_grid_df, aes(x=Var2, y=Var1, z=value)) +
geom_tile(aes(fill = value)) +
ylab(expression(paste("Sliding friction coefficient"))) +
xlab("Mass-to-drag ratio (m)") +
labs(fill="Median relative\nrunout distance\nerror") +
scale_fill_viridis_c(direction = 1) +
theme_light() +
theme(text = element_text(family = "Arial", size = 8), axis.title = element_text(size = 9),
axis.text = element_text(size = 8),legend.position = "right")
# PCM spatial cross validation #######################################
pcm_spcv <- pcmSPCV(pcm_gridsearch_multi, slide_plys = runout_polygons,
n_folds = 5, repetitions = 100, from_save = FALSE)
freq_pcm <- pcmPoolSPCV(pcm_spcv, plot_freq = TRUE)
# STOP Vignette here ... Determine source area prediction threshold #############################
setwd("/home/jason/Data/Chile/")
source_pred <- raster::raster("source_area_prediction.tif")
cutoffs <- seq(.5,.95, by=0.05)
library(foreach)
cl <- parallel::makeCluster(4)
doParallel::registerDoParallel(cl)
gpp_pareas <-
foreach(src_thrsh=cutoffs, .packages=c('rgdal','raster', 'rgeos', 'ROCR', 'Rsagacmd', 'sf', 'runout.opt')) %dopar% {
.GlobalEnv$saga <- saga
runoutPareaPredict(source_pred, dem, source_threshold = src_thrsh,
rw_slp, rw_exp, rw_per, pcm_mu, pcm_md,
gpp_iter = 1000)
}
parallel::stopCluster(cl)
# Compute AUROC for each process area
parea_aurocs<- rep(NA, length(cutoffs))
for(i in 1:length(cutoffs)){
parea_aurocs[i] <- rocParea(gpp_pareas[[i]], runout_polygons)
}
# Sample size analysis #################################################
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.