#' Perform a cluster analysis.
#'
#' This function will cluster the data using [stats::hclust()] and
#' [stats::cutree()]. Every cluster with at least two members qualifies for
#' further analysis. Clusters are then ranked based on their size in relation
#' to the total number of values. The return value is a final score between
#' 0.0 and 1.0. Lower ranking clusters contribute less to this score.
#'
#' @param data The values that should be scored.
#' @param span The maximum span of values considered to be in one cluster.
#' @param weight The weight that will be given to the next largest cluster in
#' relation to the previous one. For example, if `weight` is 0.5 (the
#' default), the first cluster will weigh 1.0, the second 0.5, the third 0.25
#' etc.
#'
#' @return A score between 0.0 and 1.0 summarizing how much the data clusters.
#'
#' @export
clusteriness <- function(data, span = 1000000, weight = 0.5) {
n <- length(data)
# Return a score of 0.0 if there is just one or no value at all.
if (n < 2) {
return(0.0)
}
# Cluster the data and compute the cluster sizes.
tree <- stats::hclust(stats::dist(data))
clusters <- stats::cutree(tree, h = span)
cluster_sizes <- sort(tabulate(clusters), decreasing = TRUE)
# Compute the "clusteriness" score.
score <- 0.0
for (i in seq_along(cluster_sizes)) {
cluster_size <- cluster_sizes[i]
if (cluster_size >= 2) {
cluster_score <- cluster_size / n
score <- score + weight^(i - 1) * cluster_score # nolint
}
}
score
}
#' Process genes clustering their distance to telomeres.
#'
#' The result will be cached and can be reused for different presets, because
#' it is independent of the reference genes in use. Most parameters are exposed
#' for the [clusteriness()] function. See its documentation for more
#' information.
#'
#' @param id Unique ID for the method and its results.
#' @param name Human readable name for the method.
#' @param description Method description.
#' @param span See [clusteriness()].
#' @param weight See [clusteriness()].
#'
#' @return An object of class `geposan_method`.
#'
#' @seealso [clusteriness()]
#'
#' @export
clustering <- function(id = "clustering",
name = "Clustering",
description = "Clustering of genes",
span = 1000000,
weight = 0.5) {
method(
id = id,
name = name,
description = description,
help = paste0(
"Proportion of orthologs that have similar telomeric distances across ",
"species. This favors genes whose position is evolutionarily conserved."
),
function(preset, progress) {
species_ids <- preset$species_ids
gene_ids <- preset$gene_ids
cached(
id,
c(species_ids, gene_ids, span, weight),
{ # nolint
scores <- data.table(gene = gene_ids)
# Prefilter the input data by species.
distances <- geposan::distances[species %chin% species_ids]
genes_done <- 0
genes_total <- length(gene_ids)
# Perform the cluster analysis for one gene.
compute <- function(gene_id) {
data <- distances[gene == gene_id, distance]
score <- clusteriness(data, span = span, weight = weight)
genes_done <<- genes_done + 1
progress(genes_done / genes_total)
score
}
scores[, score := compute(gene), by = gene]
result(
method = "clustering",
scores = scores
)
}
)
}
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.