test_that("Loading initialisation works", {
P <- 4
L <- 4
D_p <-
tn <- c("ord", "nom", "con", "fvt")
tt <- factor(tn, levels = c("ord", "nom", "con", "fvt"))
ind_mt <- list(
ord = 2L, nom = 3L, con = 4L, fvt = 5:36
)
mt <- cbind(synthetic_traits[, 1:4], fvt = t(simplify2array(synthetic_traits$fvt)))
N <- nrow(mt)
K <- c(4, 3, NA, NA)
ind_at <- list(
ord = 1L, nom = 1 + 1:3, con = 5L, fvt = 5 + 1:32
)
D_p <- sum(sapply(ind_at, length))
cat <- list(
ord = NA,
nom = factor(levels(mt$nom)),
con = NA, fvt = NA
)
gamma <- list(
ord = c(-Inf, 0, 1, 2, Inf),
nom = NA, con = NA, fvt = NA
)
g <- list(
ord = ordinal_link, nom = nominal_link, con = function(x) x, fvt = function(x) exp(x)
)
g_inv <- list(
ord = function(y){
ordinal_inverse_link(
y, cut_off_points = gamma$ord,
mu = rep(0, N), return_expectation = FALSE
)
},
nom = function(y){
nominal_inverse_link(
y, mu = matrix(0, N, length(cat$nom)),
n_samples = 1000, return_expectation = FALSE
)
},
con = function(y) y,
fvt = function(y) log(data.matrix(y))
)
meta <- specify_manifest_trait_metadata(
n_traits = P, trait_names = tn, trait_type = tt,
trait_levels = K,
manifest_trait_index = ind_mt, auxiliary_trait_index = ind_at,
link_functions = g,
inverse_link_functions = g_inv,
cut_off_points = gamma, categories = cat,
manifest_trait_df = mt,
perform_checks = TRUE
)
X <- initialise_auxiliary_traits(
n_traits = nrow(meta),
manifest_trait_df = mt,
trait_names = meta$trait_names,
trait_type = meta$trait_type,
trait_levels = meta$trait_levels,
manifest_trait_index = meta$manifest_trait_index,
auxiliary_trait_index = meta$auxiliary_trait_index,
inverse_link_functions = meta$inverse_link_functions,
auxiliary_traits = NULL,
perform_checks = TRUE
)
C_w <- diag(D_p)
x <- seq(0, 1, length.out = length(ind_at[[4]]))
d <- abs(outer(x, x, "-"))
ell <- 1 / (2 * pi)
C_w[ind_at[[4]], ind_at[[4]]] <- (exp_quad_kernel(d, 1, ell) + (1e-6 * diag(length(ind_at[[4]])))) / (1 + 1e-6)
alpha <- rgamma(L, shape = 1, rate = 1)
W <- initialise_loading(
D_prime = D_p, L = L,
ard_precision = alpha, loading_prior_correlation = C_w,
loading = NULL, method = "random",
auxiliary_traits = NULL,
perform_checks = TRUE
)
checkmate::expect_matrix(
W, mode = "numeric", any.missing = FALSE,
nrows = D_p, ncols = L
)
W <- initialise_loading(
D_prime = D_p, L = L,
ard_precision = alpha, loading_prior_correlation = C_w,
loading = NULL, method = "pca",
auxiliary_traits = X,
perform_checks = TRUE
)
pca <- prcomp(X)
expect_equal(
W,
sweep(pca$rotation[, 1:L], 2, pca$sdev[1:L], "*")
)
W <- initialise_loading(
D_prime = D_p, L = L,
ard_precision = alpha, loading_prior_correlation = C_w,
loading = NULL, method = "varimax",
auxiliary_traits = X,
perform_checks = TRUE
)
vari <- varimax(sweep(pca$rotation[, 1:L], 2, pca$sdev[1:L], "*"))
expect_equal(
W,
vari$loadings,
ignore_attr = TRUE
)
})
test_that("ARD precision initialises", {
L <- 4
alpha <- rgamma(L, shape = 1, rate = 1)
checkmate::expect_numeric(
initialise_loading_ard_precision(
L = L,
ard_shape = 2, ard_rate = 2,
ard_precision = NULL,
perform_checks = TRUE
),
len = L, lower = 0, any.missing = FALSE
)
expect_equal(
alpha,
initialise_loading_ard_precision(
L = L,
ard_shape = 2, ard_rate = 2,
ard_precision = alpha,
perform_checks = TRUE
)
)
})
test_that("Conditional Correlation", {
ind_at <- list(
ord = 1L, nom = 1 + 1:3, con = 5L, fvt = 5 + 1:32
)
D_p <- sum(sapply(ind_at, length))
C_w <- diag(D_p)
x <- seq(0, 1, length.out = length(ind_at[[4]]))
d <- abs(outer(x, x, "-"))
ell <- 1 / (2 * pi)
C_w[ind_at[[4]], ind_at[[4]]] <- (exp_quad_kernel(d, 1, ell) + (1e-6 * diag(length(ind_at[[4]])))) / (1 + 1e-6)
c_star <- compute_scaled_conditional_row_variance_vector(C_w)
i <- 10
for(i in 1:D_p) {
expect_equal(
c_star[i],
c(C_w[i, i] - (C_w[i, -i] %*% (solve(C_w[-i, -i] )%*% C_w[-i, i]))),
tolerance = 1e-4
)
}
})
test_that("Conditional mean weights",{
ind_at <- list(
ord = 1L, nom = 1 + 1:3, con = 5L, fvt = 5 + 1:32
)
D_p <- sum(sapply(ind_at, length))
C_w <- diag(D_p)
x <- seq(0, 1, length.out = length(ind_at[[4]]))
d <- abs(outer(x, x, "-"))
ell <- 1 / (2 * pi)
C_w[ind_at[[4]], ind_at[[4]]] <- (exp_quad_kernel(d, 1, ell) + (1e-6 * diag(length(ind_at[[4]])))) / (1 + 1e-6)
loading_row_conditional_mean_weight <- compute_loading_row_conditional_mean_weight_matrix(C_w)
for(i in 1:D_p) {
expect_equal(
loading_row_conditional_mean_weight[i, ],
c(C_w[i, -i] %*% solve(C_w[-i, -i])),
tolerance = 1e-4
)
}
})
test_that("Loading row precision", {
ind_at <- list(
ord = 1L, nom = 1 + 1:3, con = 5L, fvt = 5 + 1:32
)
D_p <- sum(sapply(ind_at, length))
C_w <- diag(D_p)
x <- seq(0, 1, length.out = length(ind_at[[4]]))
d <- abs(outer(x, x, "-"))
ell <- 1 / (2 * pi)
C_w[ind_at[[4]], ind_at[[4]]] <- (exp_quad_kernel(d, 1, ell) + (1e-6 * diag(length(ind_at[[4]])))) / (1 + 1e-6)
c_star <- compute_scaled_conditional_row_variance_vector(C_w)
L <- 4
alpha <- initialise_loading_ard_precision(
L = L,
ard_shape = 2, ard_rate = 2
)
P <- 4
tn <- c("ord", "nom", "con", "fvt")
tt <- factor(tn, levels = c("ord", "nom", "con", "fvt"))
lambda <- initialise_precision(
n_traits = P, trait_names = tn, trait_type = tt,
precision_prior_shape = 1, precision_prior_rate = 0.01,
precision = NULL,
perform_checks = TRUE
)
lambda_vector <- map_precision_to_auxiliary_traits(
precision = lambda, auxiliary_trait_index = ind_at
)
N <- 500
Z <- matrix(rnorm(N*L), nrow = N, ncol = L)
ZTZ <- t(Z) %*% Z
for(i in 1:D_p) {
expect_equal(compute_loading_row_precision(
total_individual_specific_latent_trait_outer_product_expectation = ZTZ,
precision = lambda_vector[i],
ard_precision = alpha,
scaled_conditional_row_variance = c_star[i],
perform_checks = TRUE
),
(lambda_vector[i] * ZTZ) + (diag(alpha) / c_star[i])
)
}
})
test_that("Loading row precision list", {
ind_at <- list(
ord = 1L, nom = 1 + 1:3, con = 5L, fvt = 5 + 1:32
)
D_p <- sum(sapply(ind_at, length))
C_w <- diag(D_p)
x <- seq(0, 1, length.out = length(ind_at[[4]]))
d <- abs(outer(x, x, "-"))
ell <- 1 / (2 * pi)
C_w[ind_at[[4]], ind_at[[4]]] <- (exp_quad_kernel(d, 1, ell) + (1e-6 * diag(length(ind_at[[4]])))) / (1 + 1e-6)
c_star <- compute_scaled_conditional_row_variance_vector(C_w)
L <- 4
alpha <- initialise_loading_ard_precision(
L = L,
ard_shape = 2, ard_rate = 2
)
P <- 4
tn <- c("ord", "nom", "con", "fvt")
tt <- factor(tn, levels = c("ord", "nom", "con", "fvt"))
lambda <- initialise_precision(
n_traits = P, trait_names = tn, trait_type = tt,
precision_prior_shape = 1, precision_prior_rate = 0.01,
precision = NULL,
perform_checks = TRUE
)
lambda_vector <- map_precision_to_auxiliary_traits(
precision = lambda, auxiliary_trait_index = ind_at
)
N <- 500
Z <- matrix(rnorm(N*L), nrow = N, ncol = L)
ZTZ <- t(Z) %*% Z
for(i in 1:D_p) {
expect_equal(compute_loading_row_precision(
total_individual_specific_latent_trait_outer_product_expectation = ZTZ,
precision = lambda_vector[i],
ard_precision = alpha,
scaled_conditional_row_variance = c_star[i],
perform_checks = TRUE
),
(lambda_vector[i] * ZTZ) + (diag(alpha) / c_star[i])
)
}
wwT <- compute_loading_row_precision_list(
total_individual_specific_latent_trait_outer_product_expectation = ZTZ,
precision_vector = lambda_vector,
ard_precision = alpha,
scaled_conditional_row_variance_vector = c_star,
perform_checks = TRUE
)
for(i in 1:D_p) {
expect_equal(compute_loading_row_precision(
total_individual_specific_latent_trait_outer_product_expectation = ZTZ,
precision = lambda_vector[i],
ard_precision = alpha,
scaled_conditional_row_variance = c_star[i],
perform_checks = TRUE
),
wwT[[i]]
)
}
})
test_that("Loading expectation", {
P <- 4
L <- 4
tn <- c("ord", "nom", "con", "fvt")
tt <- factor(tn, levels = c("ord", "nom", "con", "fvt"))
ind_mt <- list(
ord = 2L, nom = 3L, con = 4L, fvt = 5:36
)
mt <- cbind(synthetic_traits[, 1:4], fvt = t(simplify2array(synthetic_traits$fvt)))
N <- nrow(mt)
K <- c(4, 3, NA, NA)
ind_at <- list(
ord = 1L, nom = 1 + 1:3, con = 5L, fvt = 5 + 1:32
)
D_p <- sum(sapply(ind_at, length))
cat <- list(
ord = NA,
nom = factor(levels(mt$nom)),
con = NA, fvt = NA
)
gamma <- list(
ord = c(-Inf, 0, 1, 2, Inf),
nom = NA, con = NA, fvt = NA
)
g <- list(
ord = ordinal_link, nom = nominal_link, con = function(x) x, fvt = function(x) exp(x)
)
g_inv <- list(
ord = function(y){
ordinal_inverse_link(
y, cut_off_points = gamma$ord,
mu = rep(0, N), return_expectation = FALSE
)
},
nom = function(y){
nominal_inverse_link(
y, mu = matrix(0, N, length(cat$nom)),
n_samples = 1000, return_expectation = FALSE
)
},
con = function(y) y,
fvt = function(y) log(data.matrix(y))
)
meta <- specify_manifest_trait_metadata(
n_traits = P, trait_names = tn, trait_type = tt,
trait_levels = K,
manifest_trait_index = ind_mt, auxiliary_trait_index = ind_at,
link_functions = g,
inverse_link_functions = g_inv,
cut_off_points = gamma, categories = cat,
manifest_trait_df = mt,
perform_checks = TRUE
)
C_w <- diag(D_p)
x <- seq(0, 1, length.out = length(ind_at[[4]]))
d <- abs(outer(x, x, "-"))
ell <- 1 / (2 * pi)
C_w[ind_at[[4]], ind_at[[4]]] <- (exp_quad_kernel(d, 1, ell) + (1e-6 * diag(length(ind_at[[4]])))) / (1 + 1e-6)
ph <- vbar::synthetic_trait_model_specification$phylogeny
S <- length(ph$tip.label)
tmp_X <- initialise_auxiliary_traits(
n_traits = nrow(meta),
manifest_trait_df = mt,
trait_names = meta$trait_names,
trait_type = meta$trait_type,
trait_levels = meta$trait_levels,
manifest_trait_index = meta$manifest_trait_index,
auxiliary_trait_index = meta$auxiliary_trait_index,
inverse_link_functions = meta$inverse_link_functions,
auxiliary_traits = NULL,
perform_checks = T
)
tmp_pca <- prcomp(tmp_X)
tmp_vari <- varimax(sweep(tmp_pca$rotation[, 1:L], 2, tmp_pca$sdev[1:L], "*"))
tmp_W <- tmp_vari$loadings
tmp_Z <- sweep(tmp_pca$x[, 1:L], 2, tmp_pca$sdev[1:L], "/") %*% tmp_vari$rotmat
plvm <- initialise_plvm(
manifest_trait_df = mt, metadata = meta, phy = ph,
L = L,
loading_prior_correlation = C_w,
auxiliary_traits = tmp_X,
precision = NULL,
ard_precision = NULL,
ard_shape = 1, ard_rate = 1,
loading = NULL, method = "varimax",
within_taxon_amplitude = NULL,
heritable_amplitude = NULL,
length_scale = 2,
perform_checks = TRUE)
W_tmp <- plvm$loading_expectation
W_up <- compute_loading_expectation(
current_loading_expectation = plvm$loading_expectation,
loading_row_precision = plvm$loading_row_precision,
auxiliary_trait = plvm$auxiliary_traits,
latent_trait_expectation = plvm$individual_specific_latent_trait_expectation,
precision_vector = plvm$precision_vector,
ard_precision = plvm$ard_precision,
scaled_conditional_row_variance_vector = plvm$scaled_conditional_loading_row_variance_vector,
loading_row_conditional_mean_weight = plvm$loading_row_conditional_mean_weight,
perform_checks = TRUE
)
w_star_tmp <- matrix(NA, D_p, L)
for (i in 1:D_p) {
w_star <- c(C_w[i, -i] %*% solve(C_w[-i, -i]) %*% W_tmp[-i, ])
w_star_tmp[i, ] <- w_star
lxz <- c(plvm$precision_vector[i] *
t(plvm$auxiliary_traits[, i]) %*%
plvm$individual_specific_latent_trait_expectation)
W_tmp[i, ] <- plvm$loading_row_covariance[,, i] %*% (
lxz + (plvm$ard_precision / plvm$scaled_conditional_loading_row_variance_vector[i]) * w_star
)
}
expect_equal(
W_up, W_tmp
)
})
test_that("Loading elbo computation", {
P <- 4
L <- 4
tn <- c("ord", "nom", "con", "fvt")
tt <- factor(tn, levels = c("ord", "nom", "con", "fvt"))
ind_mt <- list(
ord = 2L, nom = 3L, con = 4L, fvt = 5:36
)
mt <- cbind(synthetic_traits[, 1:4], fvt = t(simplify2array(synthetic_traits$fvt)))
N <- nrow(mt)
K <- c(4, 3, NA, NA)
ind_at <- list(
ord = 1L, nom = 1 + 1:3, con = 5L, fvt = 5 + 1:32
)
D_p <- sum(sapply(ind_at, length))
cat <- list(
ord = NA,
nom = factor(levels(mt$nom)),
con = NA, fvt = NA
)
gamma <- list(
ord = c(-Inf, 0, 1, 2, Inf),
nom = NA, con = NA, fvt = NA
)
g <- list(
ord = ordinal_link, nom = nominal_link, con = function(x) x, fvt = function(x) exp(x)
)
g_inv <- list(
ord = function(y){
ordinal_inverse_link(
y, cut_off_points = gamma$ord,
mu = rep(0, N), return_expectation = FALSE
)
},
nom = function(y){
nominal_inverse_link(
y, mu = matrix(0, N, length(cat$nom)),
n_samples = 1000, return_expectation = FALSE
)
},
con = function(y) y,
fvt = function(y) log(data.matrix(y))
)
meta <- specify_manifest_trait_metadata(
n_traits = P, trait_names = tn, trait_type = tt,
trait_levels = K,
manifest_trait_index = ind_mt, auxiliary_trait_index = ind_at,
link_functions = g,
inverse_link_functions = g_inv,
cut_off_points = gamma, categories = cat,
manifest_trait_df = mt,
perform_checks = TRUE
)
C_w <- diag(D_p)
x <- seq(0, 1, length.out = length(ind_at[[4]]))
d <- abs(outer(x, x, "-"))
ell <- 1 / (2 * pi)
C_w[ind_at[[4]], ind_at[[4]]] <- (exp_quad_kernel(d, 1, ell) + (1e-6 * diag(length(ind_at[[4]])))) / (1 + 1e-6)
ph <- vbar::synthetic_trait_model_specification$phylogeny
S <- length(ph$tip.label)
plvm <- initialise_plvm(
manifest_trait_df = mt, metadata = meta, phy = ph,
L = L,
loading_prior_correlation = C_w,
auxiliary_traits = NULL,
precision = NULL,
ard_precision = NULL,
ard_shape = 1, ard_rate = 1,
loading = NULL, method = "random",
within_taxon_amplitude = NULL,
heritable_amplitude = NULL,
length_scale = 2,
perform_checks = TRUE
)
elbo <- compute_loading_elbo(
loading_expectation = plvm$loading_expectation,
loading_row_covariance = plvm$loading_row_covariance,
ard_precision = plvm$ard_precision,
loading_prior_correlation_log_det = NULL,
inv_loading_prior_correlation = NULL,
loading_prior_correlation = plvm$loading_prior_correlation,
perform_checks = TRUE
)
expect_equal(
elbo,
- 0.5 * L * determinant(C_w)$modulus[1] +
0.5 * D_p * sum(log(plvm$ard_precision)) -
0.5 * sum(sapply(
1:L,
function(i) plvm$ard_precision[i] * sum(diag(
(plvm$loading_expectation[, i] %*% t(plvm$loading_expectation[, i]) +
diag(plvm$loading_row_covariance[i, i, ])) %*%
plvm$inv_loading_prior_correlation
))
)) +
0.5 * sum(sapply(
1:D_p,
function(i){
determinant(exp(1) * plvm$loading_row_covariance[, , i])$modulus[1]
}
))
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.