## test tempura package functionality
setwd("tempura")
require(devtools)
load_all()
dataset_folder = "../doubledeepPCA/dg_models/RBD"
model_name = "three_state"
abd = grep("SortSeq", list.files(file.path(dataset_folder, "data")), value = T)
bind = grep("TiteSeq", list.files(file.path(dataset_folder, "data")), value = T)
dg_prepare_datasets(dataset_folder = dataset_folder,
abundancepca_files = paste0(dataset_folder, "/data/", abd),
bindingpca_files = paste0(dataset_folder, "/data/", bind),
fitness_scale = "log"
)
dg_prepare_model(
dataset_folder = dataset_folder,
model_name = model_name,
fix_f_dgwt = TRUE,
fix_b_dgwt = FALSE
)
dg_estimate_parallel(
dataset_folder = dataset_folder,
model_name = model_name,
iterations = 1:20,
Ncores = 8
)
for (it in seq(1,5)) {
print (it)
dg_estimate(
dataset_folder = dataset_folder,
model_name = model_name,
iteration = it,
which_test_set = 1,
maxit = 100,
trace_optim = TRUE
)
}
dg_collect_models(
dataset_folder = dataset_folder,
model_name = model_name
)
for (it in seq(2,5)) {
print (it)
dg_bootstrap(
dataset_folder = dataset_folder,
model_name = model_name,
iteration = it,
maxit = 20
)
}
dg_collect_models(
dataset_folder = dataset_folder,
model_name = model_name,
stage = "bootstrap"
)
dg_basic_analyses(
dataset_folder = dataset_folder,
model_name = model_name,
color_type = "type",
datasets_ab = c(1,1)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.