meanScan: Make a scanone plot of genotype means.

Description Usage Arguments Details Value Examples

Description

meanScan Like qtl:effectscan, but plots the genotypic means across the marker / pseudomarker grid.

Usage

1
2
3
4
meanScan(cross, pheno.col = 1, chr = NULL, covar = NULL,
  mean.FUN = function(x) mean(x, na.rm = T), se.FUN = function(x) sd(x,
  na.rm = T)/sqrt(sum(!is.na(x))), sw.width = 1, plot.se = T,
  se.alpha = 0.2, col = NULL, leg.pos = "topright", ...)

Arguments

cross

The qtl cross. Must contain genotype probabilities or imputed genotypes

pheno.col

Character or numeric vector indicating the phenotype to be tested. Only 1 phenotype can be tested at a time. If numeric, converted to character.

chr

The chromosomes to analyze. If not supplied, all are tested.

covar

dataframe of covariates like addcovar in qtl::scanone. Can only be a single column. If the data is numeric, or character, converted to factor first.

mean.FUN

The function applied to generate the line positions. Defaults to mean(x, na.rm = T)

se.FUN

The function applied to generate the confidence interval around the mean. Defaults to sd(x, na.rm = T)/sqrt(sum(!is.na(x)))

sw.width

The window size to use if smoothing is desired. If 1, no sliding window smoothing is conducted. Must be smaller than the number of markers on the smallest chromosome.

plot.se

Logical, should standard errors around the menas be plotted?

se.alpha

Numeric coding of the transparency for the standard error regions.

col

Character vector of colors to plot.

leg.pos

The character of numeric (length 2) position of the legend. Default is "topright".

...

additional arguments passed on to plot.scanone

leg.pos

The position of the legend.

Details

Calculates genotypic means at each marker/psuedomarker, plots them.

Value

The plot and an object of class scanone containing the means for each combination of genotype and covariate.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
## Not run: 
library(qtlTools)
library(qtl)
data(fake.bc)
cross<-fake.bc
cross<-calc.genoprob(cross)
ms<-meanScan(cross, covar = NULL)

# Some simple customization
ms<-meanScan(cross, covar = NULL, col = c("black","orange"),
   leg.pos = "top")

sex<-data.frame(sex = ifelse(pull.pheno(cross, "sex") == 0,"F","M"))
ms<-meanScan(cross, covar = sex, leg.pos = "right")
ms<-meanScan(cross, covar = sex, chr = c(2,7), leg.pos = "right",
   col = c("black","grey","darkblue","lightblue"))

cross.fem<-subset(cross, ind = sex[,1] == "F")
cross.male<-subset(cross, ind = sex[,1] == "M")
par(mfrow = c(2,1))
ms <-meanScan(cross.fem, leg.pos = "topright", leg.inset = .05, main = "females only")
ms <-meanScan(cross.male, leg.pos = "topright", leg.inset = .05, main = "males only")

data(fake.f2)
cross<-fake.f2
cross<-calc.genoprob(cross)
ms <- meanScan(cross, covar = NULL, leg.pos = "bottomright", leg.inset = .1)
sex<-data.frame(sex = ifelse(pull.pheno(cross, "sex") == 0,"F","M"))
ms<-meanScan(cross, covar = sex)

data(fake.4way)
cross<-fake.4way
cross<-calc.genoprob(cross)
ms<-meanScan(cross, covar = NULL)
sex<-data.frame(sex = ifelse(pull.pheno(cross, "sex") == 0,"F","M"))
ms<-meanScan(cross, covar = sex, chr = c(2,7))

data("multitrait")
cross =multitrait
cross<-calc.genoprob(cross)
ms<-meanScan(cross, covar = NULL)
ms<-meanScan(cross, covar = NULL, sw.width = 5)

## End(Not run)

jtlovell/qtlTools documentation built on May 20, 2019, 3:14 a.m.