args = commandArgs(trailingOnly=TRUE)
print(args)
data_path <- args[1]
mcmc_iter <- as.numeric(args[2])
seed <- as.numeric(args[3])
print(mcmc_iter)
print(seed)
#data_path <- "/Users/seonghwanjun/data/simulation/binary/case4/sim0/rep0"
library(ddclone)
library(dplyr)
library(reshape2)
SC_READ_THRESHOLD <- 5
# Load the bulk data.
bulk <- read.table(paste(data_path, "genotype_ssm.txt", sep="/"), header=T)
sc <- read.table(paste(data_path, "simul_sc.txt", sep="/"), header=T)
bulkDat <- data.frame("mutation_id" = bulk$ID,
"ref_counts" = bulk$d - bulk$b,
"var_counts" = bulk$b,
"normal_cn" = 2,
"minor_cn" = bulk$minor_cn,
"major_cn" = bulk$major_cn)
if (dim(sc)[1] > 0) {
sc$ID <- factor(sc$ID, levels = bulk$ID)
sc$b <- sc$d - sc$a
sc$z <- as.numeric(sc$b >= SC_READ_THRESHOLD)
sum(sc$z)
genDat <- dcast(sc, formula = Cell ~ ID, value.var = "z")
genDat <- genDat[,-1]
genDat[is.na(genDat)] <- 0
} else {
n_snvs <- dim(bulk)[1]
genDat <- as.data.frame(matrix(0, nrow = 1, ncol = n_snvs))
names(genDat) <- bulk$ID
}
output_path <- paste(data_path, "ddClone", sep="/")
if (!dir.exists(output_path)) {
dir.create(output_path, recursive = TRUE)
}
ddCloneInputObj <- make.ddclone.input(bulkDat = bulkDat, genDat = genDat, outputPath = output_path, nameTag = '')
ddCloneRes <- ddclone(dataObj = ddCloneInputObj,
outputPath = output_path, tumourContent = 1.0,
numOfIterations = mcmc_iter, thinning = 10, burnIn = 0,
seed = seed)
# Output the results.
df <- ddCloneRes$df
output_file <- paste(output_path, "results.txt", sep="/")
write.table(df, file = output_file, row.names = F, col.names = T, quote=F)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.