# Copyright (c) 2022 Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.
#
# This file is part of the gsDesign2 program.
#
# gsDesign2 is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#' @importFrom dplyr summarize
#' @importFrom gsDesign gsDesign sfLDOF
#' @importFrom stats qnorm
NULL
#' Derive spending bound for group sequential boundary
#'
#' Computes one bound at a time based on spending under given distributional assumptions.
#' While user specifies \code{gs_spending_bound()} for use with other functions,
#' it is not intended for use on its own.
#' Most important user specifications are made through a list provided to functions using \code{gs_spending_bound()}.
#' Function uses numerical integration and Newton-Raphson iteration to derive an individual bound for a group sequential
#' design that satisfies a targeted boundary crossing probability.
#' Algorithm is a simple extension of that in Chapter 19 of Jennison and Turnbull (2000).
#'
#' @param k analysis for which bound is to be computed
#' @param par a list with the following items:
#' \code{sf} (class spending function),
#' \code{total_spend} (total spend),
#' \code{param} (any parameters needed by the spending function \code{sf()}),
#' \code{timing} (a vector containing values at which spending function is to be evaluated or NULL if information-based spending is used),
#' \code{max_info} (when \code{timing} is NULL, this can be input as positive number to be used with \code{info} for information fraction at each analysis)
#' @param hgm1 subdensity grid from h1 (k=2) or hupdate (k>2) for analysis k-1; if k=1, this is not used and may be NULL
#' @param theta natural parameter used for lower bound only spending;
#' represents average drift at each time of analysis at least up to analysis k;
#' upper bound spending is always set under null hypothesis (theta = 0)
#' @param info statistical information at all analyses, at least up to analysis k
#' @param efficacy TRUE (default) for efficacy bound, FALSE otherwise
#' @param test_bound a logical vector of the same length as \code{info} should indicate which analyses will have a bound
#' @param r Integer, at least 2; default of 18 recommended by Jennison and Turnbull
#' @param tol Tolerance parameter for convergence (on Z-scale)
#' @section Specification:
#' \if{latex}{
#' \itemize{
#' \item Set the spending time at analysis.
#' \item Compute the cumulative spending at analysis.
#' \item Compute the incremental spend at each analysis.
#' \item Set test_bound a vector of length k > 1 if input as a single value.
#' \item Compute spending for current bound.
#' \item Iterate to convergence as in gsbound.c from gsDesign.
#' \item Compute subdensity for final analysis in rejection region.
#' \item Validate the output and return an error message in case of failure.
#' \item Return a numeric bound (possibly infinite).
#' }
#' }
#' \if{html}{The contents of this section are shown in PDF user manual only.}
#'
#' @return returns a numeric bound (possibly infinite) or, upon failure, generates an error message.
#' @author Keaven Anderson \email{keaven_anderson@@merck.com}
#' @references Jennison C and Turnbull BW (2000), \emph{Group Sequential
#' Methods with Applications to Clinical Trials}. Boca Raton: Chapman and Hall.
#' @export
gs_spending_bound <- function(k = 1,
par = list(sf = gsDesign::sfLDOF,
total_spend = 0.025,
param = NULL,
timing = NULL,
max_info = NULL),
hgm1 = NULL,
theta = .1,
info = 1:3,
efficacy = TRUE,
test_bound = TRUE,
r = 18,
tol = 1e-6){
# ---------------------------------- #
# check and initialize inputs #
# ---------------------------------- #
# Make test_bound a vector of length k > 1 if input as a single value
if(length(test_bound) == 1 && k > 1){test_bound <- rep(test_bound, k)}
# ---------------------------------- #
# set spending time at analyses #
# ---------------------------------- #
if(!is.null(par$timing)){
timing <- par$timing
}else{
if(is.null(par$max_info)){
timing <- info / max(info)
}else{
timing <- info / par$max_info
}
}
# ---------------------------------- #
# compute cumulative spending #
# at each analyses #
# ---------------------------------- #
spend <- par$sf(alpha = par$total_spend, t = timing, param = par$param)$spend
# ---------------------------------- #
# compute incremental spending #
# at each analyses #
# ---------------------------------- #
old_spend <- 0
for(i in 1:k){
if (test_bound[i]){ # Check if spending is taken at analysis i
xx <- spend[i] - old_spend # Cumulative spending minus previous spending
old_spend <- spend[i] # Reset previous spending
spend[i] <- xx # Incremental spend at analysis i
}else{
spend[i] <- 0 # 0 incremental spend if no testing at analysis i
}
}
# Now just get spending for current bound
spend <- spend[k]
# ---------------------------------- #
# compute lower bound #
# at each analyses #
# ---------------------------------- #
# lower bound
if (!efficacy){
# If no spending, return -Inf for bound
if(spend <= 0){return(-Inf)}
# if theta not a vector, make it one
# theta is for lower bound only
if(length(theta) == 1) theta <- rep(theta, length(info))
# set starting value
a <- qnorm(spend) + sqrt(info[k]) * theta[k]
# if it is the first analysis: no need for iteration
if(k == 1){return(a)}
# Extremes for numerical integration
mu <- theta[k] * sqrt(info[k])
EXTREMElow <- mu - 3 - 4 * log(r)
EXTREMEhi <- mu + 3 + 4 * log(r)
# iterate to convergence as in gsbound.c from gsDesign
adelta <- 1
j <- 0
# ---------------------------------------------------------------- #
# FOLLOWING UPDATE ALGORITHM FROM GSDESIGN::GSBOUND.C #
# use 1st order Taylor's series to update boundaries #
# maximum allowed change is 1 #
# maximum value allowed is z1[m1]*rtIk to keep within grid points #
# ---------------------------------------------------------------- #
while(abs(adelta) > tol){
# get grid for rejection region
hg <- hupdate(theta = theta[k], I = info[k], a = -Inf, b = a, thetam1 = theta[k-1], Im1 = info[k-1], gm1 = hgm1, r = r)
i <- length(hg$h)
# compute lower bound crossing (pik)
pik <- sum(hg$h)
adelta <- spend - pik
dplo <- hg$h[i] / hg$w[i]
if(adelta > dplo){
adelta <- 1
}else if(adelta < -dplo){
adelta <- -1
}else{
adelta <- adelta / dplo
}
a <- a + adelta
if(a > EXTREMEhi){
a <- EXTREMEhi
}else if(a < EXTREMElow){
a <- EXTREMElow
}
if (abs(adelta) < tol){return(a)}
j <- j + 1
if (j > 20){
stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", k, " !"))
}
}
}else{
# ---------------------------------- #
# compute upper bound #
# at each analyses #
# ---------------------------------- #
if(spend <= 0){return(Inf)}
# set starting value
b <- qnorm(spend, lower.tail = FALSE)
# if it is the first analysis: no iteration needed
if(k == 1){return(b)}
# if it is not the first analysis
for(iter in 0:20){
# sub-density for final analysis in rejection region
hg <- hupdate(theta = 0, I = info[k], a = b, b = Inf, thetam1 = 0, Im1 = info[k-1], gm1 = hgm1, r = r)
# compute probability of crossing bound
pik <- sum(hg$h)
# compute the derivative of bound crossing at b[k]
dpikdb <- hg$h[1] / hg$w[1]
# update upper boundary by Newton-Raphson method
b_old <- b
b <- b - (spend - pik) / dpikdb
if(abs(b - b_old) < tol){return(b)}
}
stop(paste("gs_spending_bound(): bound_update did not converge for upper bound calculation, analysis", k, " !"))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.