RegParallel <- function(
data,
design = NULL,
formula,
FUN,
FUNtype,
variables,
blocksize = 500,
cores = 3,
nestedParallel = FALSE,
p.adjust = "none",
conflevel = 95,
excludeTerms = NULL,
excludeIntercept = TRUE)
{
APPLYFUN <- NULL
message('\n##############################\n#',
'RegParallel\n',
'##############################\n')
# detect system being used
system <- Sys.info()['sysname']
message('System is:')
message('-- ', system)
# if nestedParallel is TRUE, parLapply (Windows) or
# mclapply (linux/mac) will be used to process the variables;
# thus, adding an additional layer of parallelisation.
# if nestedParallel is FALSE< lapply is used
if (nestedParallel == TRUE) {
if (system == 'Windows') {
APPLYFUN = function(...) parLapply(cl, ...)
} else {
APPLYFUN = function(...) mclapply(...)
}
} else if (nestedParallel == FALSE) {
APPLYFUN = function(...) lapply(...)
} else {
stop('Invalid value for argument nestedParallel. Must be TRUE/FALSE')
}
# blocksize
blocksize <- round(blocksize, 0)
message('Blocksize:')
message('-- ', blocksize)
# remove and report data with all 0
zeros <- which(mapply(function(x) all(x == 0), data[variables]) == TRUE)
if (length(zeros) > 0 ) {
message(length(zeros), ' variables have all zeros! Removing these...')
data <- data[,-which(colnames(data) %in% variables[zeros])]
variables <- variables[-zeros]
message('Now testing ', length(variables), ' variables')
}
# blocksize cannot be greater than number of variables to test
# throw an error if so
if (blocksize > length(variables)) {
stop('blocksize is greater than number of variables to test. ',
'Choose a smaller blocksize',
call. = FALSE)
}
# cores / threads
if (cores < 1) {
stop('Cannot have cores / threads less than 1')
}
message('Cores / Threads:')
message('-- ', floor(cores))
# nested parallelisation
if (nestedParallel == TRUE) {
message('Nesting enabled. Total potential cores + forked threads is:')
message('-- ', cores * cores)
}
# if user is on Windows, cores / threads for certain functions have
# to be registered differently, i.e., as a cluster object that implements
# SNOW functionality.
# If on Mac / Linux, they are registered via 'mc.cores' and as a number of
# cores to registerDoParallel()
cl <- NULL
if (system == 'Windows') {
cl <- makeCluster(getOption('cl.cores', cores))
registerDoParallel(cl)
registerDoSEQ()
on.exit(stopCluster(cl))
} else {
options('mc.cores' = cores)
registerDoParallel(cores)
}
# determine number of blocks
blocks <- ceiling(length(variables) / blocksize)
#blocks <- floor((length(variables)) / blocksize) + 1
#if (blocksize == length(variables)) {
# blocks <- 1
#}
#########
# parsing the formula
# substitute the [*] for a dummy variable and try to coerce to a formula
f <- gsub('\\[\\*\\]', 'dummyvar', formula)
if (is(try(as.formula(f), silent = TRUE), 'try-error')) {
stop('The formula is invalid.')
}
# strip out information from the model to parse the variable names
terms <- all.vars(as.formula(f))
# if, on the off chance, the user is testing for a variable called
# 'dummyvar', we have to account for this possibility
if (str_count(f, 'dummyvar') > 1) {
terms <- terms
} else {
terms <- terms[-grep('dummyvar', terms)]
}
message('Terms included in model:')
for (i in seq_len(length(terms))) {
message('-- ', terms[i])
}
# check that terms are in the data
for (i in seq_len(length(terms))) {
if (!any(grepl(paste0('^', terms[i], '$'), colnames(data))) == TRUE) {
stop('Error! - ', terms[i], ' not found. ',
'Check your model formula and data.')
}
}
#########
# check that a valid p.adjust entry exists
if (grepl("^holm$|^hochberg$|^hommel$|^bonferroni$|^BH$|^BY$|^fdr$|^none$", p.adjust) == FALSE) {
stop('p.adjust value not valid! ',
'See ?p.adjust for possible values')
}
# 'left align' the terms in the input data
data <- cbind(data[,which(colnames(data) %in% c(terms))], data[,which(colnames(data) %in% c(variables))])
# determine starting index in the data from which we will loop over our
# variables being tested
startIndex <- length(terms)
# when there is only 1 term, the colname of the data-frame defaults to
# 'data[, which(colnames(data) %in% c(terms))]'
# reset it
if (length(terms) == 1) {
colnames(data)[1] <- terms[1]
}
# store each possible formula in the list
formula.list <- list()
for (i in seq_len(length(variables))) {
formula.list[[i]] <- as.formula(gsub('\\[\\*\\]', variables[i], formula))
}
# dispaly first 5 formula
five <- unlist(head(formula.list), 5)
message("First 5 formulae:")
for (i in seq_len(5)) {
message('-- ', five[i])
}
# no Intercept term is returned for coxph or clogit
# issue a message to user regarding this
if ((excludeIntercept == FALSE) && (grepl('coxph|clogit', FUNtype) == TRUE)) {
message('Note: an intercept term will be generated for neither ',
'Cox Proportional Hazards nor conditional logistic regression ',
'models.')
}
# detect if incorrect FUNtype selected
if (!any((FUNtype %in% c('glm', 'lm', 'coxph', 'clogit', 'bayesglm')) == TRUE)) {
stop('FUNtype not recognised. Choose one of glm, lm, coxph, ',
'clogit, or bayesglm')
}
# identify FUNtype and launch relevant function
if (FUNtype == 'glm') {
res <- glmParallel(
data = data,
formula.list = formula.list,
FUN = FUN,
variables = variables,
terms = terms,
startIndex = startIndex,
blocksize = blocksize,
blocks = blocks,
APPLYFUN = APPLYFUN,
conflevel = conflevel,
excludeTerms = excludeTerms,
excludeIntercept = excludeIntercept)
} else if (FUNtype == 'svyglm') {
res <- svyglmParallel(
data = data,
design = design,
formula.list = formula.list,
FUN = FUN,
variables = variables,
terms = terms,
startIndex = startIndex,
blocksize = blocksize,
blocks = blocks,
APPLYFUN = APPLYFUN,
conflevel = conflevel,
excludeTerms = excludeTerms,
excludeIntercept = excludeIntercept)
} else if (FUNtype == 'lm') {
res <- lmParallel(
data = data,
formula.list = formula.list,
FUN = FUN,
variables = variables,
terms = terms,
startIndex = startIndex,
blocksize = blocksize,
blocks = blocks,
APPLYFUN = APPLYFUN,
conflevel = conflevel,
excludeTerms = excludeTerms,
excludeIntercept = excludeIntercept)
} else if (FUNtype == 'coxph') {
res <- coxphParallel(
data = data,
formula.list = formula.list,
FUN = FUN,
variables = variables,
terms = terms,
startIndex = startIndex,
blocksize = blocksize,
blocks = blocks,
APPLYFUN = APPLYFUN,
conflevel = conflevel,
excludeTerms = excludeTerms)
} else if (FUNtype == 'clogit') {
res <- clogitParallel(
data = data,
formula.list = formula.list,
FUN = FUN,
variables = variables,
terms = terms,
startIndex = startIndex,
blocksize = blocksize,
blocks = blocks,
APPLYFUN = APPLYFUN,
conflevel = conflevel,
excludeTerms = excludeTerms)
} else if (FUNtype == 'bayesglm') {
res <- bayesglmParallel(
data = data,
formula.list = formula.list,
FUN = FUN,
variables = variables,
terms = terms,
startIndex = startIndex,
blocksize = blocksize,
blocks = blocks,
APPLYFUN = APPLYFUN,
conflevel = conflevel,
excludeTerms = excludeTerms,
excludeIntercept = excludeIntercept)
}
# p-value adjustment
if (p.adjust != 'none') {
if ((FUNtype == 'coxph') || (FUNtype == 'clogit')) {
res$P.adjust <- p.adjust(res$P, p.adjust)
res$LRT.adjust <- p.adjust(res$LRT, p.adjust)
res$Wald.adjust <- p.adjust(res$Wald, p.adjust)
res$LogRank.adjust <- p.adjust(res$LogRank, p.adjust)
} else {
res$P.adjust <- p.adjust(res$P, p.adjust)
}
}
# a sanity / integrity check - this code should never be executed
# checks that all variables in results object are the same (and are in the
# same order) as the input variables.
if (!all((unique(res$Variable) == variables) == TRUE)) {
stop('An unknown error has occurred. ',
'Please report on Bioconductor support site: ',
'https://support.bioconductor.org/t/Latest/')
}
message('Done!')
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.