Description Usage Arguments Value Learning methods Author(s) See Also Examples
View source: R/learn-methods.R
These method signatures learn gene set signatures optionally augmented with
(semi-)quantitative information for the prediction of sample and cell identities
in SummarizedExperiment
objects.
1 2 | learnSignatures(se, assay.type = "counts",
method = c("PositiveProportionDifference", "PPD"), ...)
|
se |
An object of class inheriting from " |
assay.type |
A string specifying which assay values to use, e.g., |
method |
Learning method. See section "Learning methods". |
... |
Additional arguments affecting the learning method. |
A Sets
object.
Requires prior cluster membership information. This method computes the proportion of samples positive for each feature in each cluster, and subsequently identifies for each cluster the features showing the maximal difference between the detection rate in the cluster of interest and the detection rate in all other clusters.
Kevin Rue-Albrecht
learnMarkersByPositiveProportionDifference()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # Example data ----
library(SummarizedExperiment)
nsamples <- 100
u <- matrix(rpois(20000, 2), ncol=nsamples)
rownames(u) <- paste0("Gene", sprintf("%03d", seq_len(nrow(u))))
colnames(u) <- paste0("Cell", sprintf("%03d", seq_len(ncol(u))))
se <- SummarizedExperiment(assays=list(counts=u))
# Example usage ----
se1 <- se
colData(se1)[, "cluster"] <- factor(sample(head(LETTERS, 3), ncol(se1), replace=TRUE))
gs <- learnSignatures(se1, method="PositiveProportionDifference", cluster.col="cluster")
relations(gs)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.