# devtools::install_github("ki-tools/champs-mortality")
# devtools::load_all()
# library(champsmortality)
version <- readLines("inst/testdata/version.txt")
dr <- list()
### Data ingestion
d <- read_and_validate_data("inst/testdata")
# process
dd <- process_data(d, start_year = 2017, end_year = 2020)
dr$process_data <- dd
### Checks: valid_ and has_ functions
# check valids
dr$valid_conditions <- valid_conditions(dd)
dr$valid_maternal_conditions <- valid_maternal_conditions(dd)
# check has
dr$has_champs_group_sepsis <- has_champs_group(d$ads, group = "Sepsis")
dr$has_champs_group_sepsis_cct <- has_champs_group(d$ads,
group = "Sepsis", cc = FALSE)
dr$has_champs_group_malaria <- has_champs_group(d$ads, group = "Malaria")
# has_maternal_champs_group
dr$has_maternal_champs_group_s <- has_maternal_champs_group(
d$ads, group = "Sepsis")
dr$has_maternal_champs_group_m <- has_maternal_champs_group(
d$ads, group = "Malaria")
# has_icd10
dr$has_icd10 <- has_icd10(d$ads, rgx = "^Q00|^Q01|^Q05")
dr$has_icd10_cct <- has_icd10(d$ads,
rgx = "^Q00|^Q01|^Q05", cc = FALSE)
# has_maternal_icd10
dr$has_maternal_icd10 <- has_maternal_icd10(d$ads, rgx = "^A32")
### Table calculations
sites_use <- c("S6", "S5", "S7")
catch_use <- c("C1", "C4", "C3", "C5", "C6", "C7")
# mits_factor_tables
mft <- mits_factor_tables(dd,
sites = sites_use,
catchments = catch_use
)
mft1 <- mits_factor_tables(dd,
sites = sites_use[1],
catchments = catch_use[1]
)
dr$mits_factor_tables <- mft
dr$mits_factor_tables1 <- mft1
# cond_factor_tables
cftb <- cond_factor_tables(
dd,
sites = sites_use,
catchments = catch_use,
condition = "Congenital birth defects")
cftb1 <- cond_factor_tables(
dd,
sites = sites_use[1],
catchments = catch_use[1],
condition = "Congenital birth defects")
dr$cond_factor_tables_births <- cftb
dr$cond_factor_tables_births1 <- cftb1
dr$cond_factor_tables_m <- cond_factor_tables(
dd,
sites = sites_use,
catchments = catch_use,
condition = "Malnutrition")
dr$combine_decion_tables <- combine_decision_tables(
list(first = mft, second = cftb))
dr$get_rate_frac_data <- get_rate_frac_data(
dd,
site = sites_use,
catchments = catch_use,
causal_chain = FALSE,
condition = "Lower respiratory infections")
# get_rates_and_fractions
graf <- get_rates_and_fractions(
dd,
sites = sites_use,
catchments = catch_use,
causal_chain = FALSE,
pval_cutoff = 0.1, #Fixed
pct_na_cutoff = 20, #Fixed
condition = "Lower respiratory infections")
dr$get_rates_and_fractions <- graf
dr$get_site_info <- get_site_info(dd)
### HTML tables
# functions on get_rates_and_fractions
dr$table_rates_fracs <- table_rates_fracs(graf)
dr$table_factor_sig_stats_mits <- table_factor_sig_stats(
mft1,
print_columns = c("MITS", "non-MITS+DSS-only"),
percent_digits = 1
)
dr$table_factor_sig_stats_cond <- table_factor_sig_stats(
cftb1,
print_columns = c("MITS", "non-MITS+DSS-only"),
percent_digits = 1
)
# gt tab_spanner_delim looks broken.
# using Feb, 2022 version of funciton in package.
dr$table_adjust_decision <- table_adjust_decision(graf)
### Added functions for repeat calculations
inputs1 <- "inst/testdata/inputs.csv"
dr$bat1 <- batch_rates_and_fractions(dd, inputs1)
# # may need to check function uses subsets
# dr$rates_and_fractions_wide <- rates_and_fractions_wide(
# input_list[[2]],
# dat = dd)
# dr$batch_rates_and_fractions <- batch_rates_and_fractions(
# "inst/testdata/inputs_wide.csv",
# "inst/testdata",
# start_year = 2017,
# end_year = 2020
# )
### Calculations
# should get interval check for one input on each
# should this be hidden
dr$get_interval <- get_interval(1 / 100, 1000, 95)
saveRDS(dr, paste0("inst/evaluationdata/evaluation_results_v", version, ".rds"))
# This functions writes files
# champs_web_report(graf)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.