#' Multivariate Test of Uniformity based on Normal Quantiles by Yang and Modarres (2017)
#'
#' Given a multivariate sample \eqn{X}, it tests
#' \deqn{H_0 : \Sigma_x = \textrm{ uniform on } \otimes_{i=1}^p [a_i,b_i] \quad vs\quad H_1 : \textrm{ not } H_0}
#' using the procedure by Yang and Modarres (2017). Originally, it tests the goodness of fit
#' on the unit hypercube \eqn{[0,1]^p} and modified for arbitrary rectangular domain. Since
#' this method depends on quantile information, every observation should strictly reside within
#' the boundary so that it becomes valid after transformation.
#'
#' @param X an \eqn{(n\times p)} data matrix where each row is an observation.
#' @param lower length-\eqn{p} vector of lower bounds of the test domain.
#' @param upper length-\eqn{p} vector of upper bounds of the test domain.
#'
#' @return a (list) object of \code{S3} class \code{htest} containing: \describe{
#' \item{statistic}{a test statistic.}
#' \item{p.value}{\eqn{p}-value under \eqn{H_0}.}
#' \item{alternative}{alternative hypothesis.}
#' \item{method}{name of the test.}
#' \item{data.name}{name(s) of provided sample data.}
#' }
#'
#' @examples
#' ## CRAN-purpose small example
#' smallX = matrix(runif(10*3),ncol=3)
#' unif.2017YMq(smallX) # run the test
#'
#' \donttest{
#' ## empirical Type 1 error
#' niter = 1234
#' counter = rep(0,niter) # record p-values
#' for (i in 1:niter){
#' X = matrix(runif(50*5), ncol=25)
#' counter[i] = ifelse(unif.2017YMq(X)$p.value < 0.05, 1, 0)
#' }
#'
#' ## print the result
#' cat(paste("\n* Example for 'unif.2017YMq'\n","*\n",
#' "* number of rejections : ", sum(counter),"\n",
#' "* total number of trials : ", niter,"\n",
#' "* empirical Type 1 error : ",round(sum(counter/niter),5),"\n",sep=""))
#' }
#'
#' @references
#' \insertRef{yang_multivariate_2017}{SHT}
#'
#' @concept gof_uniform
#' @export
unif.2017YMq <- function(X, lower=rep(0,ncol(X)), upper=rep(1,ncol(X))){
##############################################################
# PREPROCESSING
check_nd(X) # univariate vector
n = nrow(X)
d = ncol(X)
if (d<2){
stop("* unif.2017YMq : use univariate functions for univariate data.")
}
if ((any(lower!=rep(0,d)))||(any(upper!=rep(1,d)))){
X = aux_adjustcube(X,lower,upper)
}
if ((any(X<0))||(any(X>1))){
stop("* unif.2017YMq : since it utilizes quantile function, elements in X should be in [0,1] even after transformation.")
}
if (length(lower)!=d){
stop("* unif.2017YMq : 'lower' should be a vector of length 'ncol(X)'.")
}
if (length(upper)!=d){
stop("* unif.2017YMq : 'upper' should be a vector of length 'ncol(X)'.")
}
##############################################################
# COMPUTATION
Z = qnorm(X)
Zbar = colMeans(Z)
Cn = n*sum(Zbar^2)
thestat = Cn
pvalue = pchisq(thestat, d, lower.tail = FALSE)
names(thestat) = "Cn"
##############################################################
# REPORT
hname = "Multivariate Test of Uniformity based on Normal Quantiles by Yang and Modarres (2017)"
DNAME = deparse(substitute(X))
Ha = paste("Sample ", DNAME, " does not follow uniform distribution.",sep="")
res = list(statistic=thestat, p.value=pvalue, alternative = Ha, method=hname, data.name = DNAME)
class(res) = "htest"
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.