#' Transition PHATE : Strategy 6
#'
#' set 1 for same-cluster affinities
#' otherwise, use log-like decay but maximum of those as Jessie suggested
#'
#' @export
tphate_strategy6 <- function(data, ndim=2, nbdk=5, alpha=2.0, scaler=0.5){
# Inputs
N = base::nrow(data)
DIST_data = as.matrix(aux_dist(data))
myc = max(0.0000001, as.double(scaler))
# construct : affinity for data
aff_tmp = aux_kernel_standard(DIST_data, round(nbdk), as.double(alpha))
aff_obj = igraph::graph_from_adjacency_matrix(aff_tmp, mode="undirected", weighted=TRUE, diag=FALSE)
aff_grp = igraph::cluster_louvain(aff_obj)
aff_lab = as.integer(as.factor(igraph::membership(aff_grp)))
ulabel = unique(aff_lab)
nulabel = length(ulabel)
print(paste0("the number of unique states : ",nulabel))
# construct : affinity for temporal
aff_temporal = array(1,c(N,N))
for (i in 1:(N-1)){
for (j in (i+1):N){
aff_temporal[i,j] <- aff_temporal[j,i] <- exp((log(myc)/(N-1))*(abs(i-j)))
}
}
for (i in 1:nulabel){
tgtlab = which(aff_lab==ulabel[i])
aff_temporal[tgtlab,tgtlab]=1
}
for (i in 1:(nulabel-1)){
id_i = which(aff_lab==ulabel[i])
for (j in (i+1):nulabel){
id_j = which(aff_lab==ulabel[j])
maxval = max(aff_temporal[id_i,id_j])
aff_temporal[id_i,id_j] = maxval
aff_temporal[id_j,id_i] = maxval
}
}
# affinity aggregation
affinity_machine = aff_temporal*aff_tmp
# construct : markov transition kernel
markov_hadamard = array(0,c(N,N))
for (i in 1:N){
tgt = as.vector(affinity_machine[i,])
markov_hadamard[i,] = tgt/base::sum(tgt)
}
# optimal transition steps
step_hadamard = aux_entropyrule_markov(markov_hadamard)
# matrix multiplication
Pout = markov_hadamard
for (i in 1:(step_hadamard-1)){
Pout = markov_hadamard%*%Pout
}
# STEP 4. Embedding
opt_algorithm = "mmds"
opt_potential = "log"
Y = phate_original_embedding(Pout, round(ndim), opt_algorithm, opt_potential)
# Return
output = list()
output$transition = Pout
output$embedding = Y
output$stepsize = step_hadamard
output$membership = aff_lab
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.