R/path.R

Defines functions simplePaths pathM path.graphNEL path.lvm path.lvmfit path

Documented in path path.lvm

##' Extract all possible paths from one variable to another connected component
##' in a latent variable model. In an estimated model the effect size is
##' decomposed into direct, indirect and total effects including approximate
##' standard errors.
##'
##' @title Extract pathways in model graph
##' @export
##' @aliases path effects path.lvm effects.lvmfit
##' totaleffects
##' @seealso \code{children}, \code{parents}
##' @return If \code{object} is of class \code{lvmfit} a list with the following
##' elements is returned \item{idx}{ A list where each element defines a
##' possible pathway via a integer vector indicating the index of the visited
##' nodes. } \item{V }{ A List of covariance matrices for each path. }
##' \item{coef }{A list of parameters estimates for each path} \item{path }{A
##' list where each element defines a possible pathway via a character vector
##' naming the visited nodes in order.  } \item{edges }{Description of 'comp2'}
##'
##' If \code{object} is of class \code{lvm} only the \code{path} element will be
##' returned.
##'
##' The \code{effects} method returns an object of class \code{effects}.
##' @note For a \code{lvmfit}-object the parameters estimates and their
##' corresponding covariance matrix are also returned.  The
##' \code{effects}-function additionally calculates the total and indirect
##' effects with approximate standard errors
##' @author Klaus K. Holst
##' @keywords methods models graphs
##' @examples
##'
##' m <- lvm(c(y1,y2,y3)~eta)
##' regression(m) <- y2~x1
##' latent(m) <- ~eta
##' regression(m) <- eta~x1+x2
##' d <- sim(m,500)
##' e <- estimate(m,d)
##'
##' path(Model(e),y2~x1)
##' parents(Model(e), ~y2)
##' children(Model(e), ~x2)
##' children(Model(e), ~x2+eta)
##' effects(e,y2~x1)
##' ## All simple paths (undirected)
##' path(m,y1~x1,all=TRUE)
##'
##' @usage
##' \method{path}{lvm} (object, to = NULL, from, all=FALSE, ...)
##' \method{effects}{lvmfit} (object, to, from, ...)
##' @param object Model object (\code{lvm})
##' @param to Outcome variable (string). Alternatively a formula specifying
##' response and predictor in which case the argument \code{from} is ignored.
##' @param from Response variable (string), not necessarily directly affected by
##' \code{to}.
##' @param all If TRUE all simple paths (in undirected graph) is returned
##' on/off.
##' @param \dots Additional arguments to be passed to the low level functions
##' @export
path <- function(object,...) UseMethod("path")

##' @export
path.lvmfit <- function(object,to=NULL,from,...) {
    mypath <- pathM(Model(object)$M,to,from,...)
    cc <- coef(object,type=9,labels=FALSE) ## All parameters (fixed and variable)
    cc0 <- coef(object,type=2) ## Estimated parameters
    i1 <- na.omit(match(rownames(cc),rownames(cc0)))
    idx.cc0 <-  which(rownames(cc)%in%rownames(cc0)); ## Position of estimated parameters among all parameters
    S <- matrix(0,nrow(cc),nrow(cc)); rownames(S) <- colnames(S) <- rownames(cc)
    V <- object$vcov
    S[idx.cc0,idx.cc0] <- V[i1,i1]  ## "Covariance matrix" of all parameters

    idx <- list()
    coefs <- list()
    V <- list()
    for (i in seq_along(mypath)) {
        xx <- mypath[[i]]
        ii <- c()
        for (j in seq_len(length(xx)-1)) {
            st <- paste0(xx[j+1], lava.options()$symbol[1], xx[j])
            ii <- c(ii, match(st,rownames(cc)))
        }
        idx <- c(idx, list(ii))
        V <- c(V, list(S[ii,ii]))
        coefs <- c(coefs, list(cc[ii]))
    }

    edges <- list()
    for (i in seq_along(mypath)) {
        p0 <- mypath[[i]]
        ee <- c()
        for (i in seq_len(length(p0)-1)) {
            ee <- c(ee, paste(p0[i],p0[i+1],sep="~"))
        }
        edges <- c(edges, list(ee))
    }
    res <- list(idx=idx,V=V,coef=coefs, path=mypath, edges=edges)
    return(res)
}

##' @export
path.lvm <- function(object,to=NULL,from,all=FALSE,...) {
    pathM(object$M,to=to,from=from,all=all,...)
}

##' @export
path.graphNEL <- function(object,to,from,...) {
    if (inherits(to,"formula")) {
        fvar <- extractvar(to)
        if (length(fvar$x)==1 & length(fvar$y)==1)
            return(path(object,to=fvar$y,from=fvar$x))
        res <- list()
        for (y in fvar$y) {
            for (x in fvar$x) {
                cat("x=",x, " y=",y, "\n")
                res <- c(res, list(path(object,to=y,from=x)))
            }
        }
        return(res)
    }
    ff <- function(g,from=1,to=NULL,res=list()) {
        M <- graph::edgeMatrix(g)
        i1 <- which(M[1,]==from)
        for (i in i1) {
            e <- M[,i]; newto <- e[2];
            if (is.null(to) || M[2,i]==to) {
                res <- c(res, list(M[,i]))
            }
            newpath <- ff(g,from=newto,to=to,list())
            if (length(newpath)>0)
                for (j in seq_along(newpath)) {
                    if (is.null(to) || (tail(newpath[[j]],1)==to))
                        res <- c(res, list(c(M[,i],newpath[[j]][-1])))
                }
        }
        return(res)
    }
    idxfrom <- ifelse(is.numeric(from),from,which(from==graph::nodes(object)))
    ##M <- as(object,"matrix")
    ##reachable <- acc(M,graph::nodes(object)[idxfrom])
    reachable <- graph::acc(object,graph::nodes(object)[idxfrom])[[1]]

    if (is.null(to)) {
        idxto <- reachable
    } else {
        idxto <- ifelse(is.numeric(to),to,which(to==graph::nodes(object)))
    }

    if (!(graph::nodes(object)[idxto] %in% names(reachable)))
        ##    return(structure(list(),to=to[1],from=from[1]))
        return(NULL)
    ##    stop("No directional relationship between variables")

    mypaths <- ff(object,idxfrom,idxto)
    res <- list()
    for (i in seq_along(mypaths)) {
        res <- c(res, list(graph::nodes(object)[mypaths[[i]]]))
    }
    return(res)
}


pathM <- function(M,to,from,all=FALSE,...) {
    nn <- colnames(M)
    if (inherits(to,"formula")) {
        fvar <- extractvar(to)
        if (length(fvar$x)==1 & length(fvar$y)==1)
            return(pathM(M,to=fvar$y,from=fvar$x,all=all))
        res <- list()
        for (y in fvar$y) {
            for (x in fvar$x) {
                cat("x=",x, " y=",y, "\n")
                res <- c(res, list(pathM(M,to=y,from=x,all=all)))
            }
        }
        return(res)
    }
    if (all) { ## Get all simple paths
        res <- simplePaths(to,from,from,M,list())
        return(res)
    }


    ff <- function(g,from=1,to=NULL,res=list()) {
        i1 <- which(M[from,]==1)
        for (i in i1) {
            ##      e <- M[,i]; newto <- e[2];
            if (is.null(to) || i==to) {
                res <- c(res, list(c(from,i)))
            }
            newpath <- ff(g,from=i,to=to,list())
            if (length(newpath)>0)
                for (j in seq_along(newpath)) {
                    if (is.null(to) || (tail(newpath[[j]],1)==to))
                        res <- c(res, list(c(c(from,i),newpath[[j]][-1])))
                }
        }
        return(res)
    }
    idxfrom <- ifelse(is.numeric(from),from,which(from==nn))
    reachable <- acc(M,nn[idxfrom])

    if (is.null(to)) {
        idxto <- reachable
    } else {
        idxto <- ifelse(is.numeric(to),to,which(to==nn))
    }

    if (!(nn[idxto] %in% reachable))
        return(NULL)
    ##    stop("No directional relationship between variables")

    mypaths <- ff(M,idxfrom,idxto)
    res <- list()
    for (i in seq_along(mypaths)) {
        res <- c(res, list(nn[mypaths[[i]]]))
    }
    return(res)
}



## Find all simple paths (no cycles) in an undirected graph
simplePaths <- function(target,currentpath,visited,adjmat,allpaths) {
    lastnode <- currentpath[length(currentpath)]
    A <- (adjmat+t(adjmat))>0
    if (lastnode==target) {
        allpaths <- c(allpaths,list(currentpath))
    } else {
        for (neighbour in rownames(adjmat)[which(A[,lastnode])]) {
            if (!(neighbour%in%visited)) {
                currentpath <- c(currentpath,neighbour)
                visited <- c(visited,neighbour)
                allpaths <- simplePaths(target,currentpath,visited,adjmat,allpaths)
                visited <- setdiff(visited,neighbour)
                currentpath <- currentpath[-length(currentpath)]
            }
        }
    }
    return(allpaths)
}
kkholst/lava documentation built on Feb. 22, 2024, 4:07 p.m.